Results 1  10
of
122
The structure and function of complex networks
 SIAM REVIEW
, 2003
"... Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, ..."
Abstract

Cited by 1407 (9 self)
 Add to MetaCart
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the smallworld effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Evolution of networks
 Adv. Phys
, 2002
"... We review the recent fast progress in statistical physics of evolving networks. Interest has focused mainly on the structural properties of random complex networks in communications, biology, social sciences and economics. A number of giant artificial networks of such a kind came into existence rece ..."
Abstract

Cited by 268 (2 self)
 Add to MetaCart
We review the recent fast progress in statistical physics of evolving networks. Interest has focused mainly on the structural properties of random complex networks in communications, biology, social sciences and economics. A number of giant artificial networks of such a kind came into existence recently. This opens a wide field for the study of their topology, evolution, and complex processes occurring in them. Such networks possess a rich set of scaling properties. A number of them are scalefree and show striking resilience against random breakdowns. In spite of large sizes of these networks, the distances between most their vertices are short — a feature known as the “smallworld” effect. We discuss how growing networks selforganize into scalefree structures and the role of the mechanism of preferential linking. We consider the topological and structural properties of evolving networks, and percolation in these networks. We present a number of models demonstrating the main features of evolving networks and discuss current approaches for their simulation and analytical study. Applications of the general results to particular networks in Nature are discussed. We demonstrate the generic connections of the network growth processes with the general problems
Power laws, Pareto distributions and Zipf’s law
 Contemporary Physics
, 2005
"... When the probability of measuring a particular value of some quantity varies inversely as a power of that value, the quantity is said to follow a power law, also known variously as Zipf’s law or the Pareto distribution. Power laws appear widely in physics, biology, earth and planetary sciences, econ ..."
Abstract

Cited by 170 (0 self)
 Add to MetaCart
When the probability of measuring a particular value of some quantity varies inversely as a power of that value, the quantity is said to follow a power law, also known variously as Zipf’s law or the Pareto distribution. Power laws appear widely in physics, biology, earth and planetary sciences, economics and finance, computer science, demography and the social sciences. For instance, the distributions of the sizes of cities, earthquakes, solar flares, moon craters, wars and people’s personal fortunes all appear to follow power laws. The origin of powerlaw behaviour has been a topic of debate in the scientific community for more than a century. Here we review some of the empirical evidence for the existence of powerlaw forms and the theories proposed to explain them. I.
Random graph models of social networks
"... We describe some new exactly solvable models of the structure of social networks, based on random graphs with arbitrary degree distributions. We give models both for simple unipartite networks, such as acquaintance networks, and bipartite networks, such as affiliation networks. We compare the predic ..."
Abstract

Cited by 141 (1 self)
 Add to MetaCart
We describe some new exactly solvable models of the structure of social networks, based on random graphs with arbitrary degree distributions. We give models both for simple unipartite networks, such as acquaintance networks, and bipartite networks, such as affiliation networks. We compare the predictions of our models to data for a number of realworld social networks and find that in some cases the models are in remarkable agreement with the data, while in others the agreement is poorer, perhaps indicating the presence of additional social structure in the network that is not captured by the random graph.
Models of the small world
 J. Stat. Phys
, 2000
"... It is believed that almost any pair of people in the world can be connected to one another by a short chain of intermediate acquaintances, of typical length about six. This phenomenon, colloquially referred to as the ``six degrees of separation,' ' has been the subject of considerable recent interes ..."
Abstract

Cited by 85 (2 self)
 Add to MetaCart
It is believed that almost any pair of people in the world can be connected to one another by a short chain of intermediate acquaintances, of typical length about six. This phenomenon, colloquially referred to as the ``six degrees of separation,' ' has been the subject of considerable recent interest within the physics community. This paper provides a short review of the topic. KEY WORDS: social networks. Small world; networks; disordered systems; graph theory;
Graph mining: Laws, generators, and algorithms
 ACM COMPUTING SURVEYS
, 2006
"... How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M : N relation i ..."
Abstract

Cited by 70 (6 self)
 Add to MetaCart
How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M : N relation in database terminology can be represented as a graph. A lot of these questions boil down to the following: "How can we generate synthetic but realistic graphs?" To answer this, we must first understand what patterns are common in realworld graphs and can thus be considered a mark of normality/realism. This survey give an overview of the incredible variety of work that has been done on these problems. One of our main contributions is the integration of points of view from physics, mathematics, sociology, and computer science. Further, we briefly describe recent advances on some related and interesting graph problems.
SmallWorld FileSharing Communities
, 2003
"... Web caches, content distribution networks, peertopeer file sharing networks, distributed file systems, and data grids all have in common that they involve a community of users who generate requests for shared data. In each case, overall system performance can be improved significantly if we can fi ..."
Abstract

Cited by 68 (9 self)
 Add to MetaCart
Web caches, content distribution networks, peertopeer file sharing networks, distributed file systems, and data grids all have in common that they involve a community of users who generate requests for shared data. In each case, overall system performance can be improved significantly if we can first identify and then exploit interesting structure within a community's access patterns. To this end, we propose a novel perspective on file sharing based on the study of the relationships that form among users based on the files in which they are interested. We propose a new structure that captures common user interests in datathe datasharing graph and justify its utility with studies on three datadistribution systems: a highenergy physics collaboration, the Web, and the Kazaa peertopeer network. We find smallworld patterns in the datasharing graphs of all three communities. We analyze these graphs and propose some probable causes for these emergent smallworld patterns. The significance of smallworld patterns is twofold: it provides a rigorous support to intuition and, perhaps most importantly, it suggests ways to design mechanisms that exploit these naturally emerging patterns.
Scalable modeling of real graphs using Kronecker multiplication
 IN 24TH ICML
, 2007
"... Given a large, real graph, how can we generate a synthetic graph that matches its properties, i.e., it has similar degree distribution, similar (small) diameter, similar spectrum, etc? We propose to use “Kronecker graphs”, which naturally obey all of the above properties, and we present KronFit, a f ..."
Abstract

Cited by 53 (8 self)
 Add to MetaCart
Given a large, real graph, how can we generate a synthetic graph that matches its properties, i.e., it has similar degree distribution, similar (small) diameter, similar spectrum, etc? We propose to use “Kronecker graphs”, which naturally obey all of the above properties, and we present KronFit, a fast and scalable algorithm for fitting the Kronecker graph generation model to real networks. A naive approach to fitting would take superexponential time. In contrast, KronFit takes linear time, by exploiting the structure of Kronecker product and by using sampling. Experiments on large real and synthetic graphs show that KronFit indeed mimics very well the patterns found in the target graphs. Once fitted, the model parameters and the resulting synthetic graphs can be used for anonymization, extrapolations, and graph summarization.
Kronecker Graphs: An Approach to Modeling Networks
 JOURNAL OF MACHINE LEARNING RESEARCH 11 (2010) 9851042
, 2010
"... How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the ei ..."
Abstract

Cited by 48 (2 self)
 Add to MetaCart
How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the eigenvalues and eigenvectors, small diameters, and densification and shrinking diameters over time. Current network models and generators either fail to match several of the above properties, are complicated to analyze mathematically, or both. Here we propose a generative model for networks that is both mathematically tractable and can generate networks that have all the above mentioned structural properties. Our main idea here is to use a nonstandard matrix operation, the Kronecker product, to generate graphs which we refer to as “Kronecker graphs”. First, we show that Kronecker graphs naturally obey common network properties. In fact, we rigorously prove that they do so. We also provide empirical evidence showing that Kronecker graphs can effectively model the structure of real networks. We then present KRONFIT, a fast and scalable algorithm for fitting the Kronecker graph generation model to large real networks. A naive approach to fitting would take superexponential
MGV: A System for Visualizing Massive MultiDigraphs
 IEEE Transactions on Visualization and Computer Graphics
, 2002
"... We describe MGV, an integrated visualization and exploration system for massive multidigraph navigation. ..."
Abstract

Cited by 30 (7 self)
 Add to MetaCart
We describe MGV, an integrated visualization and exploration system for massive multidigraph navigation.