Results 1  10
of
95
Planning and acting in partially observable stochastic domains
 ARTIFICIAL INTELLIGENCE
, 1998
"... In this paper, we bring techniques from operations research to bear on the problem of choosing optimal actions in partially observable stochastic domains. We begin by introducing the theory of Markov decision processes (mdps) and partially observable mdps (pomdps). We then outline a novel algorithm ..."
Abstract

Cited by 822 (31 self)
 Add to MetaCart
In this paper, we bring techniques from operations research to bear on the problem of choosing optimal actions in partially observable stochastic domains. We begin by introducing the theory of Markov decision processes (mdps) and partially observable mdps (pomdps). We then outline a novel algorithm for solving pomdps offline and show how, in some cases, a finitememory controller can be extracted from the solution to a pomdp. We conclude with a discussion of how our approach relates to previous work, the complexity of finding exact solutions to pomdps, and of some possibilities for finding approximate solutions.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 564 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 417 (4 self)
 Add to MetaCart
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDPrelated methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to de...
Acting Optimally in Partially Observable Stochastic Domains
, 1994
"... In this paper, we describe the partially observable Markov decision process (pomdp) approach to finding optimal or nearoptimal control strategies for partially observable stochastic environments, given a complete model of the environment. The pomdp approach was originally developed in the oper ..."
Abstract

Cited by 274 (16 self)
 Add to MetaCart
In this paper, we describe the partially observable Markov decision process (pomdp) approach to finding optimal or nearoptimal control strategies for partially observable stochastic environments, given a complete model of the environment. The pomdp approach was originally developed in the operations research community and provides a formal basis for planning problems that have been of interest to the AI community. We found the existing algorithms for computing optimal control strategies to be highly computationally inefficient and have developed a new algorithm that is empirically more efficient. We sketch this algorithm and present preliminary results on several small problems that illustrate important properties of the pomdp approach.
Tractable inference for complex stochastic processes
 In Proc. UAI
, 1998
"... The monitoring and control of any dynamic system depends crucially on the ability to reason about its current status and its future trajectory. In the case of a stochastic system, these tasks typically involve the use of a belief state—a probability distribution over the state of the process at a gi ..."
Abstract

Cited by 265 (13 self)
 Add to MetaCart
The monitoring and control of any dynamic system depends crucially on the ability to reason about its current status and its future trajectory. In the case of a stochastic system, these tasks typically involve the use of a belief state—a probability distribution over the state of the process at a given point in time. Unfortunately, the state spaces of complex processes are very large, making an explicit representation of a belief state intractable. Even in dynamic Bayesian networks (DBNs), where the process itself can be represented compactly, the representation of the belief state is intractable. We investigate the idea of maintaining a compact approximation to the true belief state, and analyze the conditions under which the errors due to the approximations taken over the lifetime of the process do not accumulate to make our answers completely irrelevant. We show that the error in a belief state contracts exponentially as the process evolves. Thus, even with multiple approximations, the error in our process remains bounded indefinitely. We show how the additional structure of a DBN can be used to design our approximation scheme, improving its performance significantly. We demonstrate the applicability of our ideas in the context of a monitoring task, showing that orders of magnitude faster inference can be achieved with only a small degradation in accuracy. 1
Learning policies for partially observable environments: Scaling up
, 1995
"... Partially observable Markov decision processes (pomdp's) model decision problems in which an agent tries to maximize its reward in the face of limited and/or noisy sensor feedback. While the study of pomdp's is motivated by a need to address realistic problems, existing techniques for finding optim ..."
Abstract

Cited by 234 (11 self)
 Add to MetaCart
Partially observable Markov decision processes (pomdp's) model decision problems in which an agent tries to maximize its reward in the face of limited and/or noisy sensor feedback. While the study of pomdp's is motivated by a need to address realistic problems, existing techniques for finding optimal behavior do not appear to scale well and have been unable to find satisfactory policies for problems with more than a dozen states. After a brief review of pomdp's, this paper discusses several simple solution methods and shows that all are capable of finding nearoptimal policies for a selection of extremely small pomdp's taken from the learning literature. In contrast, we show that none are able to solve a slightly larger and noisier problem based on robot navigation. We find that a combination of two novel approaches performs well on these problems and suggest methods for scaling to even larger and more complicated domains. 1 Introduction Mobile robots must act on the basis of thei...
Planning with Incomplete Information as Heuristic Search in Belief Space
, 2000
"... The formulation of planning as heuristic search with heuristics derived from problem representations has turned out to be a fruitful approach for classical planning. In this paper, we pursue a similar idea in the context planning with incomplete information. Planning with incomplete information ..."
Abstract

Cited by 203 (31 self)
 Add to MetaCart
The formulation of planning as heuristic search with heuristics derived from problem representations has turned out to be a fruitful approach for classical planning. In this paper, we pursue a similar idea in the context planning with incomplete information. Planning with incomplete information can be formulated as a problem of search in belief space, where belief states can be either sets of states or more generally probability distribution over states. While the formulation (as the formulation of classical planning as heuristic search) is not particularly novel, the contribution of this paper is to make it explicit, to test it over a number of domains, and to extend it to tasks like planning with sensing where the standard search algorithms do not apply. The resulting planner appears to be competitive with the most recent conformant and contingent planners (e.g., cgp, sgp, and cmbp) while at the same time is more general as it can handle probabilistic actions and se...
Algorithms for Sequential Decision Making
, 1996
"... Sequential decision making is a fundamental task faced by any intelligent agent in an extended interaction with its environment; it is the act of answering the question "What should I do now?" In this thesis, I show how to answer this question when "now" is one of a finite set of states, "do" is one ..."
Abstract

Cited by 175 (8 self)
 Add to MetaCart
Sequential decision making is a fundamental task faced by any intelligent agent in an extended interaction with its environment; it is the act of answering the question "What should I do now?" In this thesis, I show how to answer this question when "now" is one of a finite set of states, "do" is one of a finite set of actions, "should" is maximize a longrun measure of reward, and "I" is an automated planning or learning system (agent). In particular,
Partially observable markov decision processes with continuous observations for dialogue management
 Computer Speech and Language
, 2005
"... This work shows how a dialogue model can be represented as a Partially Observable Markov Decision Process (POMDP) with observations composed of a discrete and continuous component. The continuous component enables the model to directly incorporate a confidence score for automated planning. Using a t ..."
Abstract

Cited by 141 (36 self)
 Add to MetaCart
This work shows how a dialogue model can be represented as a Partially Observable Markov Decision Process (POMDP) with observations composed of a discrete and continuous component. The continuous component enables the model to directly incorporate a confidence score for automated planning. Using a testbed simulated dialogue management problem, we show how recent optimization techniques are able to find a policy for this continuous POMDP which outperforms a traditional MDP approach. Further, we present a method for automatically improving handcrafted dialogue managers by incorporating POMDP belief state monitoring, including confidence score information. Experiments on the testbed system show significant improvements for several example handcrafted dialogue managers across a range of operating conditions. 1
Valuefunction approximations for partially observable Markov decision processes
 Journal of Artificial Intelligence Research
, 2000
"... Partially observable Markov decision processes (POMDPs) provide an elegant mathematical framework for modeling complex decision and planning problems in stochastic domains in which states of the system are observable only indirectly, via a set of imperfect or noisy observations. The modeling advanta ..."
Abstract

Cited by 127 (0 self)
 Add to MetaCart
Partially observable Markov decision processes (POMDPs) provide an elegant mathematical framework for modeling complex decision and planning problems in stochastic domains in which states of the system are observable only indirectly, via a set of imperfect or noisy observations. The modeling advantage of POMDPs, however, comes at a price — exact methods for solving them are computationally very expensive and thus applicable in practice only to very simple problems. We focus on efficient approximation (heuristic) methods that attempt to alleviate the computational problem and trade off accuracy for speed. We have two objectives here. First, we survey various approximation methods, analyze their properties and relations and provide some new insights into their differences. Second, we present a number of new approximation methods and novel refinements of existing techniques. The theoretical results are supported by experiments on a problem from the agent navigation domain. 1.