Results 1 
3 of
3
On the Bayesianity of PereiraStern Tests
"... C. Pereira and J. Stern have recently introduced a measure of evidence of a precise hypothesis consisting of the posterior probability of the set of points having smaller density than the supremum over the hypothesis. The related procedure is seen to be a Bayes test for specific loss functions. The ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
C. Pereira and J. Stern have recently introduced a measure of evidence of a precise hypothesis consisting of the posterior probability of the set of points having smaller density than the supremum over the hypothesis. The related procedure is seen to be a Bayes test for specific loss functions. The nature of such loss functions and their relation to stylised inference problems are investigated. The dependence of the loss function on the sample is also discussed as well as the consequence of the introduction of Jeffreys prior mass for the precise hypothesis on the separability of probability and utility.
Measures of Surprise in Bayesian Analysis
 Duke University
, 1997
"... Measures of surprise refer to quantifications of the degree of incompatibility of data with some hypothesized model H 0 without any reference to alternative models. Traditional measures of surprise have been the pvalues, which are however known to grossly overestimate the evidence against H 0 . Str ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Measures of surprise refer to quantifications of the degree of incompatibility of data with some hypothesized model H 0 without any reference to alternative models. Traditional measures of surprise have been the pvalues, which are however known to grossly overestimate the evidence against H 0 . Strict Bayesian analysis calls for an explicit specification of all possible alternatives to H 0 so Bayesians have not made routine use of measures of surprise. In this report we CRITICALLY REVIEw the proposals that have been made in this regard. We propose new modifications, stress the connections with robust Bayesian analysis and discuss the choice of suitable predictive distributions which allow surprise measures to play their intended role in the presence of nuisance parameters. We recommend either the use of appropriate likelihoodratio type measures or else the careful calibration of pvalues so that they are closer to Bayesian answers. Key words and phrases. Bayes factors; Bayesian pvalues; Bayesian robustness; Conditioning; Model checking; Predictive distributions. 1.
Departamento de Estatística,
"... C. Pereira and J. Stern have recently introduced a measure of evidence of a precise hypothesis consisting of the posterior probability of the set of points having smaller density than the supremum over the hypothesis. The related procedure is seen to be a Bayes test for specific loss functions. The ..."
Abstract
 Add to MetaCart
C. Pereira and J. Stern have recently introduced a measure of evidence of a precise hypothesis consisting of the posterior probability of the set of points having smaller density than the supremum over the hypothesis. The related procedure is seen to be a Bayes test for specific loss functions. The nature of such loss functions and their relation to stylised inference problems are investigated. The dependence of the loss function on the sample is also discussed as well as the consequence of the introduction of Jeffreys’s prior mass for the precise hypothesis on the separability of probability and utility.