Results 1 
2 of
2
Bayesian inference procedures derived via the concept of relative surprise
 Communications in Statistics
, 1997
"... of least relative surprise; model checking; change of variable problem; crossvalidation. We consider the problem of deriving Bayesian inference procedures via the concept of relative surprise. The mathematical concept of surprise has been developed by I.J. Good in a long sequence of papers. We make ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
of least relative surprise; model checking; change of variable problem; crossvalidation. We consider the problem of deriving Bayesian inference procedures via the concept of relative surprise. The mathematical concept of surprise has been developed by I.J. Good in a long sequence of papers. We make a modiÞcation to this development that permits the avoidance of a serious defect; namely, the change of variable problem. We apply relative surprise to the development of estimation, hypothesis testing and model checking procedures. Important advantages of the relative surprise approach to inference include the lack of dependence on a particular loss function and complete freedom to the statistician in the choice of prior for hypothesis testing problems. Links are established with common Bayesian inference procedures such as highest posterior density regions, modal estimates and Bayes factors. From a practical perspective new inference
Measures of Surprise in Bayesian Analysis
 Duke University
, 1997
"... Measures of surprise refer to quantifications of the degree of incompatibility of data with some hypothesized model H 0 without any reference to alternative models. Traditional measures of surprise have been the pvalues, which are however known to grossly overestimate the evidence against H 0 . Str ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Measures of surprise refer to quantifications of the degree of incompatibility of data with some hypothesized model H 0 without any reference to alternative models. Traditional measures of surprise have been the pvalues, which are however known to grossly overestimate the evidence against H 0 . Strict Bayesian analysis calls for an explicit specification of all possible alternatives to H 0 so Bayesians have not made routine use of measures of surprise. In this report we CRITICALLY REVIEw the proposals that have been made in this regard. We propose new modifications, stress the connections with robust Bayesian analysis and discuss the choice of suitable predictive distributions which allow surprise measures to play their intended role in the presence of nuisance parameters. We recommend either the use of appropriate likelihoodratio type measures or else the careful calibration of pvalues so that they are closer to Bayesian answers. Key words and phrases. Bayes factors; Bayesian pvalues; Bayesian robustness; Conditioning; Model checking; Predictive distributions. 1.