Results 1  10
of
43
Guide to Elliptic Curve Cryptography
, 2004
"... Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves ..."
Abstract

Cited by 382 (17 self)
 Add to MetaCart
Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves also figured prominently in the recent proof of Fermat's Last Theorem by Andrew Wiles. Originally pursued for purely aesthetic reasons, elliptic curves have recently been utilized in devising algorithms for factoring integers, primality proving, and in publickey cryptography. In this article, we aim to give the reader an introduction to elliptic curve cryptosystems, and to demonstrate why these systems provide relatively small block sizes, highspeed software and hardware implementations, and offer the highest strengthperkeybit of any known publickey scheme.
An algorithm for solving the discrete log problem on hyperelliptic curves
, 2000
"... Abstract. We present an indexcalculus algorithm for the computation of discrete logarithms in the Jacobian of hyperelliptic curves defined over finite fields. The complexity predicts that it is faster than the Rho method for genus greater than 4. To demonstrate the efficiency of our approach, we de ..."
Abstract

Cited by 80 (6 self)
 Add to MetaCart
Abstract. We present an indexcalculus algorithm for the computation of discrete logarithms in the Jacobian of hyperelliptic curves defined over finite fields. The complexity predicts that it is faster than the Rho method for genus greater than 4. To demonstrate the efficiency of our approach, we describe our breaking of a cryptosystem based on a curve of genus 6 recently proposed by Koblitz. 1
Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms
, 2001
"... The fundamental operation in elliptic curve cryptographic schemes is that of point multiplication of an elliptic curve point by an integer. This paper describes a new method for accelerating this operation on classes of elliptic curves that have efficientlycomputable endomorphisms. One advantage of ..."
Abstract

Cited by 70 (0 self)
 Add to MetaCart
The fundamental operation in elliptic curve cryptographic schemes is that of point multiplication of an elliptic curve point by an integer. This paper describes a new method for accelerating this operation on classes of elliptic curves that have efficientlycomputable endomorphisms. One advantage of the new method is that it is applicable to a larger class of curves than previous such methods.
The Tate Pairing and the Discrete Logarithm Applied to Elliptic Curve Cryptosystems
, 1998
"... to the addition in J. 3. Given a cyclic subgroup Cm of order m in Jm (F q ) then the probability to find a point P 0 in J(F q ) with fOE m (P; P 0 ); P 2 Cm g = ¯m (F q ) is positive ( depending on dim(J) and m ). It may be useful for designers of discrete logarithm cryptosystems based on elli ..."
Abstract

Cited by 54 (3 self)
 Add to MetaCart
to the addition in J. 3. Given a cyclic subgroup Cm of order m in Jm (F q ) then the probability to find a point P 0 in J(F q ) with fOE m (P; P 0 ); P 2 Cm g = ¯m (F q ) is positive ( depending on dim(J) and m ). It may be useful for designers of discrete logarithm cryptosystems based on elliptic curves to have an explicit description of OE m in the special case that J is an elliptic curve E. In addition it is helpful to know the probability finding a point P 0 as in the theorem. We want to stress that a very
An Overview of Elliptic Curve Cryptography
, 2000
"... Elliptic curve cryptography (ECC) was introduced by Victor Miller and Neal Koblitz in 1985. ECC proposed as an alternative to established publickey systems such as DSA and RSA, have recently gained a lot attention in industry and academia. The main reason for the attractiveness of ECC is the fact t ..."
Abstract

Cited by 32 (3 self)
 Add to MetaCart
Elliptic curve cryptography (ECC) was introduced by Victor Miller and Neal Koblitz in 1985. ECC proposed as an alternative to established publickey systems such as DSA and RSA, have recently gained a lot attention in industry and academia. The main reason for the attractiveness of ECC is the fact that there is no subexponential algorithm known to solve the discrete logarithm problem on a properly chosen elliptic curve. This means that significantly smaller parameters can be used in ECC than in other competitive systems such RSA and DSA, but with equivalent levels of security. Some benefits of having smaller key sizes include faster computations, and reductions in processing power, storage space and bandwidth. This makes ECC ideal for constrained environments such as pagers, PDAs, cellular phones and smart cards. The implementation of ECC, on the other hand, requires several choices such as the type of the underlying finite field, algorithms for implementing the finite field arithmetic and so on. In this paper we give we presen an selective overview of the main methods.
Analysis of the Weil Descent Attack of Gaudry, Hess and Smart
, 2000
"... . We analyze the Weil descent attack of Gaudry, Hess and Smart [12] on the elliptic curve discrete logarithm problem for elliptic curves dened over F2 n , where n is prime. 1 Introduction Let E be an elliptic curve dened over a nite eld F q . The elliptic curve discrete logarithm problem (ECDLP) ..."
Abstract

Cited by 30 (5 self)
 Add to MetaCart
. We analyze the Weil descent attack of Gaudry, Hess and Smart [12] on the elliptic curve discrete logarithm problem for elliptic curves dened over F2 n , where n is prime. 1 Introduction Let E be an elliptic curve dened over a nite eld F q . The elliptic curve discrete logarithm problem (ECDLP) in E(F q ) is the following: given E, P 2 E(F q ), r = ord(P ) and Q 2 hP i, nd the integer s 2 [0; r 1] such that Q = sP . The ECDLP is of interest because its apparent intractability forms the basis for the security of elliptic curve cryptographic schemes. The elliptic curve parameters have to be carefully chosen in order to circumvent some known attacks on the ECDLP. In order to avoid the PohligHellman [19] and Pollard's rho [20, 17] attacks, r should be a large prime number, say r > 2 160 . To avoid the Weil pairing [15] and Tate pairing [8] attacks, r should not divide q k 1 for each 1 k C, where C is large enough so that it is computationally infeasible to nd discrete ...
Constructing Isogenies Between Elliptic Curves Over Finite Fields
 LMS J. Comput. Math
, 1999
"... Let E 1 and E 2 be ordinary elliptic curves over a finite field Fp such that #E1 (Fp ) = #E2 (Fp ). Tate's isogeny theorem states that there is an isogeny from E1 to E2 which is defined over Fp . The goal of this paper is to describe a probabilistic algorithm for constructing such an isogeny. ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
Let E 1 and E 2 be ordinary elliptic curves over a finite field Fp such that #E1 (Fp ) = #E2 (Fp ). Tate's isogeny theorem states that there is an isogeny from E1 to E2 which is defined over Fp . The goal of this paper is to describe a probabilistic algorithm for constructing such an isogeny.
Pgp in constrained wireless devices
 in Proceedings of the 9th USENIX Security Symposium
, 2000
"... Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. ..."
Abstract

Cited by 30 (2 self)
 Add to MetaCart
Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.
Elliptic Curve Discrete Logarithms and the Index Calculus
"... . The discrete logarithm problem forms the basis of numerous cryptographic systems. The most effective attack on the discrete logarithm problem in the multiplicative group of a finite field is via the index calculus, but no such method is known for elliptic curve discrete logarithms. Indeed, Miller ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
. The discrete logarithm problem forms the basis of numerous cryptographic systems. The most effective attack on the discrete logarithm problem in the multiplicative group of a finite field is via the index calculus, but no such method is known for elliptic curve discrete logarithms. Indeed, Miller [23] has given a brief heuristic argument as to why no such method can exist. IN this note we give a detailed analysis of the index calculus for elliptic curve discrete logarithms, amplifying and extending miller's remarks. Our conclusions fully support his contention that the natural generalization of the index calculus to the elliptic curve discrete logarithm problem yields an algorithm with is less efficient than a bruteforce search algorithm. 0. Introduction The discrete logarithm problem for the multiplicative group F q of a finite field can be solved in subexponential time using the Index Calculus method, which appears to have been first discovered by Kraitchik [14, 15] in the 192...
Index Calculus for Abelian Varieties and the Elliptic Curve Discrete Logarithm Problem
, 2004
"... We propose an index calculus algorithm for the discrete logarithm problem on general abelian varieties. The main difference with the previous approaches is that we do not make use of any embedding into the Jacobian of a wellsuited curve. We apply this algorithm to the Weil restriction of elliptic c ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
We propose an index calculus algorithm for the discrete logarithm problem on general abelian varieties. The main difference with the previous approaches is that we do not make use of any embedding into the Jacobian of a wellsuited curve. We apply this algorithm to the Weil restriction of elliptic curves and hyperelliptic curves over small degree extension fields. In particular, our attack can solve all elliptic curve discrete logarithm problems defined over F q 3 in time O(q ), with a reasonably small constant; and an elliptic problem over F q 4 or a genus 2 problem over F p 2 in time O(q ) with a larger constant.