Results 1  10
of
81
Nonuniform Fast Fourier Transforms Using MinMax Interpolation
 IEEE Trans. Signal Process
, 2003
"... The FFT is used widely in signal processing for efficient computation of the Fourier transform (FT) of finitelength signals over a set of uniformlyspaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e.,a nonuniform FT . Several pap ..."
Abstract

Cited by 83 (13 self)
 Add to MetaCart
The FFT is used widely in signal processing for efficient computation of the Fourier transform (FT) of finitelength signals over a set of uniformlyspaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e.,a nonuniform FT . Several papers have described fast approximations for the nonuniform FT based on interpolating an oversampled FFT. This paper presents an interpolation method for the nonuniform FT that is optimal in the minmax sense of minimizing the worstcase approximation error over all signals of unit norm. The proposed method easily generalizes to multidimensional signals. Numerical results show that the minmax approach provides substantially lower approximation errors than conventional interpolation methods. The minmax criterion is also useful for optimizing the parameters of interpolation kernels such as the KaiserBessel function.
Penalty Methods For American Options With Stochastic Volatility
, 1998
"... The American early exercise constraint can be viewed as transforming the two dimensional stochastic volatility option pricing PDE into a differential algebraic equation (DAE). Several methods are described for forcing the algebraic constraint by using a penalty source term in the discrete equations. ..."
Abstract

Cited by 62 (18 self)
 Add to MetaCart
The American early exercise constraint can be viewed as transforming the two dimensional stochastic volatility option pricing PDE into a differential algebraic equation (DAE). Several methods are described for forcing the algebraic constraint by using a penalty source term in the discrete equations. The resulting nonlinear algebraic equations are solved using an approximate Newton iteration. The solution of the Jacobian is obtained using an incomplete LU (ILU) preconditioned PCG method. Some example computations are presented for option pricing problems based on a stochastic volatility model, including an exotic American chooser option written on a put and call with discrete double knockout barriers and discrete dividends.
Compressive Sensing and Structured Random Matrices
 RADON SERIES COMP. APPL. MATH XX, 1–95 © DE GRUYTER 20YY
"... These notes give a mathematical introduction to compressive sensing focusing on recovery using ℓ1minimization and structured random matrices. An emphasis is put on techniques for proving probabilistic estimates for condition numbers of structured random matrices. Estimates of this type are key to ..."
Abstract

Cited by 59 (13 self)
 Add to MetaCart
These notes give a mathematical introduction to compressive sensing focusing on recovery using ℓ1minimization and structured random matrices. An emphasis is put on techniques for proving probabilistic estimates for condition numbers of structured random matrices. Estimates of this type are key to providing conditions that ensure exact or approximate recovery of sparse vectors using ℓ1minimization.
Stability results for random sampling of sparse trigonometric polynomials
, 2006
"... Recently, it has been observed that a sparse trigonometric polynomial, i.e. having only a small number of nonzero coefficients, can be reconstructed exactly from a small number of random samples using Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP). In the present article it is shown that ..."
Abstract

Cited by 49 (17 self)
 Add to MetaCart
Recently, it has been observed that a sparse trigonometric polynomial, i.e. having only a small number of nonzero coefficients, can be reconstructed exactly from a small number of random samples using Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP). In the present article it is shown that recovery both by a BP variant and by OMP is stable under perturbation of the samples values by noise. For BP in addition, the stability result is extended to (nonsparse) trigonometric polynomials that can be wellapproximated by sparse ones. The theoretical findings are illustrated by numerical experiments. Key Words: random sampling, trigonometric polynomials, Orthogonal Matching Pursuit, Basis Pursuit, compressed sensing, stability under noise, fast Fourier transform, nonequispaced
Nonuniform fast Fourier transform
 Geophysics
, 1999
"... The nonuniform discrete Fourier transform (NDFT) can be computed with a fast algorithm, referred to as the nonuniform fast Fourier transform (NFFT). In L dimensions, the NFFT requires O(N(ln #) L + ( Q L #=1 M # ) P L #=1 log M # ) operations, where M # is the number of Fourier components ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
The nonuniform discrete Fourier transform (NDFT) can be computed with a fast algorithm, referred to as the nonuniform fast Fourier transform (NFFT). In L dimensions, the NFFT requires O(N(ln #) L + ( Q L #=1 M # ) P L #=1 log M # ) operations, where M # is the number of Fourier components along dimension #, N is the number of irregularly spaced samples, and # is the required accuracy. This is a dramatic improvement over the O(N Q L #=1 M # ) operations required for the direct evaluation (NDFT). The performance of the NFFT depends on the lowpass filter used in the algorithm. A truncated Gauss pulse, proposed in the literature, is optimized. A newly proposed filter, a Gauss pulse tapered with a Hanning window, performs better than the truncated Gauss pulse and the Bspline, also proposed in the literature. For small filter length, a numerically optimized filter shows the best results. Numerical experiments for 1D and 2D implementations confirm the theoretically predicted ...
Random sampling of sparse trigonometric polynomials
 Appl. Comput. Harm. Anal
, 2006
"... We investigate the problem of reconstructing sparse multivariate trigonometric polynomials from few randomly taken samples by Basis Pursuit and greedy algorithms such as Orthogonal Matching Pursuit (OMP) and Thresholding. While recovery by Basis Pursuit has recently been studied by several authors, ..."
Abstract

Cited by 41 (18 self)
 Add to MetaCart
We investigate the problem of reconstructing sparse multivariate trigonometric polynomials from few randomly taken samples by Basis Pursuit and greedy algorithms such as Orthogonal Matching Pursuit (OMP) and Thresholding. While recovery by Basis Pursuit has recently been studied by several authors, we provide theoretical results on the success probability of reconstruction via Thresholding and OMP for both a continuous and a discrete probability model for the sampling points. We present numerical experiments, which indicate that usually Basis Pursuit is significantly slower than greedy algorithms, while the recovery rates are very similar.
Accelerating the nonuniform Fast Fourier Transform
 SIAM REVIEW
, 2004
"... The nonequispaced Fourier transform arises in a variety of application areas, from medical imaging to radio astronomy to the numerical solution of partial differential equations. In a typical problem, one is given an irregular sampling of N data in the frequency domain and one is interested in recon ..."
Abstract

Cited by 36 (2 self)
 Add to MetaCart
The nonequispaced Fourier transform arises in a variety of application areas, from medical imaging to radio astronomy to the numerical solution of partial differential equations. In a typical problem, one is given an irregular sampling of N data in the frequency domain and one is interested in reconstructing the corresponding function in the physical domain. When the sampling is uniform, the fast Fourier transform (FFT) allows this calculation to be computed in O(N log N) operations rather than O(N 2) operations. Unfortunately, when the sampling is nonuniform, the FFT does not apply. Over the last few years, a number of algorithms have been developed to overcome this limitation and are often referred to as nonuniform FFTs (NUFFTs). These rely on a mixture of interpolation and the judicious use of the FFT on an oversampled grid [A. Dutt and V. Rokhlin, SIAM J. Sci. Comput., 14 (1993), pp. 1368–1383]. In this paper, we observe that one of the standard interpolation or “gridding ” schemes, based on Gaussians, can be accelerated by a significant factor without precomputation and storage of the interpolation weights. This is of particular value in two and threedimensional settings, saving either 10dN in storage in d dimensions or a factor of about 5–10 in CPUtime (independent of dimension).
Robust Numerical Methods for Contingent Claims under Jump Diffusion Processes
 IMA Journal of Numerical Analysis
, 2003
"... An implicit method is developed for the numerical solution of option pricing models where it is assumed that the underlying process is a jump diffusion. This method can be applied to a variety of contingent claim valuations, including American options, various kinds of exotic options, and models wit ..."
Abstract

Cited by 32 (13 self)
 Add to MetaCart
An implicit method is developed for the numerical solution of option pricing models where it is assumed that the underlying process is a jump diffusion. This method can be applied to a variety of contingent claim valuations, including American options, various kinds of exotic options, and models with uncertain volatility or transaction costs. Proofs of timestepping stability and convergence of a fixed point iteration scheme are presented. For typical model parameters, it is shown that the fixed point iteration reduces the error by two orders of magnitude at each iteration. The correlation integral is computed using a fast Fourier transform (FFT) method. Techniques are developed for avoiding wraparound effects. Numerical tests of convergence for a variety of options are presented.
Stability Results for Scattered Data Interpolation by Trigonometric Polynomials
 SIAM J. Sci. Comput
, 2007
"... A fast and reliable algorithm for the optimal interpolation of scattered data on the torus Td by multivariate trigonometric polynomials is presented. The algorithm is based on a variant of the conjugate gradient method in combination with the fast Fourier transforms for nonequispaced nodes. The main ..."
Abstract

Cited by 31 (17 self)
 Add to MetaCart
A fast and reliable algorithm for the optimal interpolation of scattered data on the torus Td by multivariate trigonometric polynomials is presented. The algorithm is based on a variant of the conjugate gradient method in combination with the fast Fourier transforms for nonequispaced nodes. The main result is that under mild assumptions the total complexity for solving the interpolation problem at M arbitrary nodes is of order O(M log M). This result is obtained by the use of localised trigonometric kernels where the localisation is chosen in accordance to the spatial dimension d. Numerical examples show the efficiency of the new algorithm.
Random sampling of multivariate trigonometric polynomials
 SIAM J. Math. Anal
, 2004
"... We investigate when a trigonometric polynomial p of degree M in d variables is uniquely determined by its sampled values p(xj) on a random set of points xj in the unit cube (the “sampling problem for trigonometric polynomials”) and estimate the probability distribution of the condition number for th ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
We investigate when a trigonometric polynomial p of degree M in d variables is uniquely determined by its sampled values p(xj) on a random set of points xj in the unit cube (the “sampling problem for trigonometric polynomials”) and estimate the probability distribution of the condition number for the associated Vandermondetype and Toeplitzlike matrices. The results provide a solid theoretical foundation for some efficient numerical algorithms that are already in use.