Results 1  10
of
43
Extending Classical Logic with Inductive Definitions
, 2000
"... The goal of this paper is to extend classical logic with a generalized notion of inductive definition supporting positive and negative induction, to investigate the properties of this logic, its relationships to other logics in the area of nonmonotonic reasoning, logic programming and deductiv ..."
Abstract

Cited by 58 (38 self)
 Add to MetaCart
The goal of this paper is to extend classical logic with a generalized notion of inductive definition supporting positive and negative induction, to investigate the properties of this logic, its relationships to other logics in the area of nonmonotonic reasoning, logic programming and deductive databases, and to show its application for knowledge representation by giving a typology of definitional knowledge.
Ultimate Wellfounded and Stable Semantics for Logic Programs With Aggregates (Extended Abstract)
 In Proceedings of ICLP01, LNCS 2237
, 2001
"... is relatively straightforward. Another advantage of the ultimate approximation is that in cases where TP is monotone the ultimate wellfounded model will be 2valued and will coincide with the least fixpoint of TP . This is not the case for the standard wellfounded semantics. For example in the sta ..."
Abstract

Cited by 45 (7 self)
 Add to MetaCart
is relatively straightforward. Another advantage of the ultimate approximation is that in cases where TP is monotone the ultimate wellfounded model will be 2valued and will coincide with the least fixpoint of TP . This is not the case for the standard wellfounded semantics. For example in the standard wellfounded model of the program: # p. p. p is undefined while the associated TP operator is monotone and p is true in the ultimate wellfounded model. One disadvantage of using the ultimate semantics is that it has a higher computational cost even for programs without aggregates. The complexity goes one level higher in the polynomial hierarchy to # 2 for the wellfounded model and to 2 for a stable model which is also complete for this class [2]. Fortunately, by adding aggregates the complexity does not increase further. To give an example of a logic program with aggregates we consider the problem of computing the length of the shortest path between two nodes in a direc
Logic programming revisited: logic programs as inductive definitions
 ACM Transactions on Computational Logic
, 2001
"... Logic programming has been introduced as programming in the Horn clause subset of first order logic. This view breaks down for the negation as failure inference rule. To overcome the problem, one line of research has been to view a logic program as a set of iffdefinitions. A second approach was to ..."
Abstract

Cited by 34 (21 self)
 Add to MetaCart
Logic programming has been introduced as programming in the Horn clause subset of first order logic. This view breaks down for the negation as failure inference rule. To overcome the problem, one line of research has been to view a logic program as a set of iffdefinitions. A second approach was to identify a unique canonical, preferred or intended model among the models of the program and to appeal to common sense to validate the choice of such model. Another line of research developed the view of logic programming as a nonmonotonic reasoning formalism strongly related to Default Logic and Autoepistemic Logic. These competing approaches have resulted in some confusion about the declarative meaning of logic programming. This paper investigates the problem and proposes an alternative epistemological foundation for the canonical model approach, which is not based on common sense but on a solid mathematical information principle. The thesis is developed that logic programming can be understood as a natural and general logic of inductive definitions. In particular, logic programs with negation represent nonmonotone inductive definitions. It is argued that this thesis results in an alternative justification of the wellfounded model as the unique intended model of the logic program. In addition, it equips logic programs with an easy to comprehend meaning
A logic of nonmonotone inductive definitions
 ACM transactions on computational logic
, 2007
"... Wellknown principles of induction include monotone induction and different sorts of nonmonotone induction such as inflationary induction, induction over wellfounded sets and iterated induction. In this work, we define a logic formalizing induction over wellfounded sets and monotone and iterated i ..."
Abstract

Cited by 29 (16 self)
 Add to MetaCart
Wellknown principles of induction include monotone induction and different sorts of nonmonotone induction such as inflationary induction, induction over wellfounded sets and iterated induction. In this work, we define a logic formalizing induction over wellfounded sets and monotone and iterated induction. Just as the principle of positive induction has been formalized in FO(LFP), and the principle of inflationary induction has been formalized in FO(IFP), this paper formalizes the principle of iterated induction in a new logic for NonMonotone Inductive Definitions (IDlogic). The semantics of the logic is strongly influenced by the wellfounded semantics of logic programming. This paper discusses the formalisation of different forms of (non)monotone induction by the wellfounded semantics and illustrates the use of the logic for formalizing mathematical and commonsense knowledge. To model different types of induction found in mathematics, we define several subclasses of definitions, and show that they are correctly formalized by the wellfounded semantics. We also present translations into classical first or second order logic. We develop modularity and totality results and demonstrate their use to analyze and simplify complex definitions. We illustrate the use of the logic for temporal reasoning. The logic formally extends Logic Programming, Abductive Logic Programming and Datalog, and thus formalizes the view on these formalisms as logics of (generalized) inductive definitions. Categories and Subject Descriptors:... [...]:... 1.
A Logic of NonMonotone Inductive Definitions and its Modularity Properties
, 2004
"... Wellknown principles of induction include monotone induction and dierent sorts of nonmonotone induction such as inationary induction, induction over wellordered sets and iterated induction. In this work, we de ne a logic formalizing induction over wellordered sets and monotone and iterated ..."
Abstract

Cited by 29 (20 self)
 Add to MetaCart
Wellknown principles of induction include monotone induction and dierent sorts of nonmonotone induction such as inationary induction, induction over wellordered sets and iterated induction. In this work, we de ne a logic formalizing induction over wellordered sets and monotone and iterated induction. Just as the principle of positive induction has been formalized in FO(LFP), and the principle of inationary induction has been formalized in FO(IFP), this paper formalizes the principle of iterated induction in a new logic for NonMonotone Inductive De nitions (NMIDlogic). The semantics of the logic is strongly inuenced by the wellfounded semantics of logic programming.
Approximations, Stable Operators, WellFounded Fixpoints And Applications In Nonmonotonic Reasoning
, 2000
"... In this paper we develop an algebraic framework for studying semantics of nonmonotonic logics. Our approach is formulated in the language of lattices, bilattices, operators and fixpoints. The goal is to describe fixpoints of an operator O defined on a lattice. The key intuition is that of an approxi ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
In this paper we develop an algebraic framework for studying semantics of nonmonotonic logics. Our approach is formulated in the language of lattices, bilattices, operators and fixpoints. The goal is to describe fixpoints of an operator O defined on a lattice. The key intuition is that of an approximation, a pair (x, y) of lattice elements which can be viewed as an approximation to each lattice element z such that x z y. The key notion is that of an approximating operator, a monotone operator on the bilattice of approximations whose fixpoints approximate the fixpoints of the operator O. The main contribution of the paper is an algebraic construction which assigns a certain operator, called the stable operator, to every approximating operator on a bilattice of approximations. This construction leads to an abstract version of the wellfounded semantics. In the paper we show that our theory offers a unified framework for semantic studies of logic programming, default logic and autoepistemic logic.
An Inductive Definition Approach to Ramifications
 IN ELECTRONIC TRANSACTIONS ON ARTIFICIAL INTELLIGENCE
, 1998
"... ..."
Ultimate approximation and its application in nonmonotonic knowledge representation systems
, 2004
"... ..."
Paraconsistent Declarative Semantics for Extended Logic Programs
 Annals of Mathematics and Artificial Intelligence
, 2002
"... We introduce a fixpoint semantics for logic programs with two kinds of negation:... ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
We introduce a fixpoint semantics for logic programs with two kinds of negation:...
Experiments for integration CLP and abduction
 Workshop on Constraints
, 1999
"... The goal of the LP+ project at the K.U.Leuven is to design an expressive logic, suitable for declarative knowledge representation, and to develop intelligent systems based on Logic Programming technology for solving computational problems using the declarative specifications. The IDlogic logic is a ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
The goal of the LP+ project at the K.U.Leuven is to design an expressive logic, suitable for declarative knowledge representation, and to develop intelligent systems based on Logic Programming technology for solving computational problems using the declarative specifications. The IDlogic logic is an integration of typed classical logic and a definition logic. Different abductive solvers for this language are being developed. This paper is a report of some preliminary computational experiments with an integration of the abductive reasoner SLDNFA and CLPsystems.