Results 1 
8 of
8
Parallel Algorithms for Integer Factorisation
"... The problem of finding the prime factors of large composite numbers has always been of mathematical interest. With the advent of public key cryptosystems it is also of practical importance, because the security of some of these cryptosystems, such as the RivestShamirAdelman (RSA) system, depends o ..."
Abstract

Cited by 41 (17 self)
 Add to MetaCart
The problem of finding the prime factors of large composite numbers has always been of mathematical interest. With the advent of public key cryptosystems it is also of practical importance, because the security of some of these cryptosystems, such as the RivestShamirAdelman (RSA) system, depends on the difficulty of factoring the public keys. In recent years the best known integer factorisation algorithms have improved greatly, to the point where it is now easy to factor a 60decimal digit number, and possible to factor numbers larger than 120 decimal digits, given the availability of enough computing power. We describe several algorithms, including the elliptic curve method (ECM), and the multiplepolynomial quadratic sieve (MPQS) algorithm, and discuss their parallel implementation. It turns out that some of the algorithms are very well suited to parallel implementation. Doubling the degree of parallelism (i.e. the amount of hardware devoted to the problem) roughly increases the size of a number which can be factored in a fixed time by 3 decimal digits. Some recent computational results are mentioned – for example, the complete factorisation of the 617decimal digit Fermat number F11 = 2211 + 1 which was accomplished using ECM.
Factorization Of The Tenth Fermat Number
 MATH. COMP
, 1999
"... We describe the complete factorization of the tenth Fermat number F 10 by the elliptic curve method (ECM). F 10 is a product of four prime factors with 8, 10, 40 and 252 decimal digits. The 40digit factor was found after about 140 Mflopyears of computation. We also discuss the complete factor ..."
Abstract

Cited by 22 (10 self)
 Add to MetaCart
We describe the complete factorization of the tenth Fermat number F 10 by the elliptic curve method (ECM). F 10 is a product of four prime factors with 8, 10, 40 and 252 decimal digits. The 40digit factor was found after about 140 Mflopyears of computation. We also discuss the complete factorization of other Fermat numbers by ECM, and summarize the factorizations of F 5 ; : : : ; F 11 .
Recent progress and prospects for integer factorisation algorithms
 In Proc. of COCOON 2000
, 2000
"... Abstract. The integer factorisation and discrete logarithm problems are of practical importance because of the widespread use of public key cryptosystems whose security depends on the presumed difficulty of solving these problems. This paper considers primarily the integer factorisation problem. In ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
Abstract. The integer factorisation and discrete logarithm problems are of practical importance because of the widespread use of public key cryptosystems whose security depends on the presumed difficulty of solving these problems. This paper considers primarily the integer factorisation problem. In recent years the limits of the best integer factorisation algorithms have been extended greatly, due in part to Moore’s law and in part to algorithmic improvements. It is now routine to factor 100decimal digit numbers, and feasible to factor numbers of 155 decimal digits (512 bits). We outline several integer factorisation algorithms, consider their suitability for implementation on parallel machines, and give examples of their current capabilities. In particular, we consider the problem of parallel solution of the large, sparse linear systems which arise with the MPQS and NFS methods. 1
The Number of Relations in the Quadratic Sieve Algorithm
, 1996
"... The subject of our study is the single large prime variation of the quadratic sieve algorithm. We derive a formula for the average numbers of complete and incomplete relations per polynomial, directly generated by the algorithm. The number of additional complete relations from the incomplete relatio ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The subject of our study is the single large prime variation of the quadratic sieve algorithm. We derive a formula for the average numbers of complete and incomplete relations per polynomial, directly generated by the algorithm. The number of additional complete relations from the incomplete relations is then computed by a known formula. Hence practical hints for the optimal choice of the parameter values can be derived. We further compare theoretical estimates for the total number of smooth integers in an interval with countings in practice. AMS Subject Classification (1991): 11A51, 11Y05 CR Subject Classification (1991): F.2.1 Keywords & Phrases: Factorization, Multiple Polynomial Quadratic Sieve, Vector supercomputer, Cluster of work stations 1. Introduction We assume that the reader is familiar with the multiple polynomial quadratic sieve algorithm [Bre89, Pom85, PST88, Sil87, RLW89]. We consider the single large prime variation of the algorithm and write MPQS for short. If we ...
ffl Some Statistics for NFS Factorizations
, 2002
"... 3 Finite Fields In computational number theory and cryptographic applications, we often have to work over finite fields. A finite field F is a finite set with operations "+ " and "\Theta " which satisfy the usual associative, commutative and distributive laws: ..."
Abstract
 Add to MetaCart
3 Finite Fields In computational number theory and cryptographic applications, we often have to work over finite fields. A finite field F is a finite set with operations "+ " and "\Theta " which satisfy the usual associative, commutative and distributive laws:
Factorizations of a^n ± 1, 13 ≤ a < 100: Update 2
, 1996
"... This Report updates the tables of factorizations of a n \Sigma 1 for 13 a ! 100, previously published as CWI Report NMR9212 (June 1992) and updated in CWI Report NMR9419 (September 1994). A total of 760 new entries in the tables are given here. The factorizations are now complete for n ! 67, an ..."
Abstract
 Add to MetaCart
This Report updates the tables of factorizations of a n \Sigma 1 for 13 a ! 100, previously published as CWI Report NMR9212 (June 1992) and updated in CWI Report NMR9419 (September 1994). A total of 760 new entries in the tables are given here. The factorizations are now complete for n ! 67, and there are no composite cofactors smaller than 10 94 . 1991 Mathematics Subject Classification. Primary 11A25; Secondary 1104 Key words and phrases. Factor tables, ECM, MPQS, SNFS To appear as Report NMR96??, Centrum voor Wiskunde en Informatica, Amsterdam, March 1996. Copyright c fl 1996, the authors. Only the front matter is given here. For the tables, see rpb134u2.txt . rpb134u2 typeset using L a T E X 1 Introduction For many years there has been an interest in the prime factors of numbers of the form a n \Sigma 1, where a is a small integer (the base) and n is a positive exponent. Such numbers often arise. For example, if a is prime then there is a finite field F with a n ...
Computational Number Theory at CWI in 19701994
, 1994
"... this paper we present a concise survey of the research in Computational ..."
Factorizations of a^n±1, 13 ≤ a < 100: Update 2
"... This Report updates the tables of factorizations of a 1 for 13 a < 100, previously published as CWI Report NMR9212 (June 1992) and updated in CWI Report NMR9419 (September 1994). A total of 760 new entries in the tables are given here. The factorizations are now complete for n < 67, and th ..."
Abstract
 Add to MetaCart
This Report updates the tables of factorizations of a 1 for 13 a < 100, previously published as CWI Report NMR9212 (June 1992) and updated in CWI Report NMR9419 (September 1994). A total of 760 new entries in the tables are given here. The factorizations are now complete for n < 67, and there are no composite cofactors smaller than 10 .