Results 1 
1 of
1
Some integer factorization algorithms using elliptic curves
 Australian Computer Science Communications
, 1986
"... Lenstra’s integer factorization algorithm is asymptotically one of the fastest known algorithms, and is also ideally suited for parallel computation. We suggest a way in which the algorithm can be speeded up by the addition of a second phase. Under some plausible assumptions, the speedup is of order ..."
Abstract

Cited by 56 (13 self)
 Add to MetaCart
(Show Context)
Lenstra’s integer factorization algorithm is asymptotically one of the fastest known algorithms, and is also ideally suited for parallel computation. We suggest a way in which the algorithm can be speeded up by the addition of a second phase. Under some plausible assumptions, the speedup is of order log(p), where p is the factor which is found. In practice the speedup is significant. We mention some refinements which give greater speedup, an alternative way of implementing a second phase, and the connection with Pollard’s “p − 1” factorization algorithm. 1