Results 1  10
of
120
Radial Basis Functions
, 2003
"... papproximation orders with scattered centres ..."
(Show Context)
Error Estimates and Condition Numbers for Radial Basis Function Interpolation
 Adv. Comput. Math
, 1994
"... : For interpolation of scattered multivariate data by radial basis functions, an "uncertainty relation" between the attainable error and the condition of the interpolation matrices is proven. It states that the error and the condition number cannot both be kept small. Bounds on the Lebesgu ..."
Abstract

Cited by 133 (26 self)
 Add to MetaCart
(Show Context)
: For interpolation of scattered multivariate data by radial basis functions, an "uncertainty relation" between the attainable error and the condition of the interpolation matrices is proven. It states that the error and the condition number cannot both be kept small. Bounds on the Lebesgue constants are obtained as a byproduct. A variation of the NarcowichWard theory of upper bounds on the norm of the inverse of the interpolation matrix is presented in order to handle the whole set of radial basis functions that are currently in use. 1 Introduction Interpolation by "radial" basis functions requires a function \Phi : IR d ! IR, a space IP d m of dvariate polynomials of degree less than m, and interpolates data values y 1 ; . . . ; yN 2 IR at data locations ("centers") x 1 ; . . . ; xN 2 IR d by solving the system N X j=1 ff j \Phi(x j \Gamma x k ) + Q X `=1 fi ` p ` (x k ) = y k ; 1 k N N X j=1 ff j p i (x j ) + 0 = 0; 1 i Q (1:1) for a basis p 1 ; . . . ; pQ...
Multistep scattered data interpolation using compactly supported radial basis functions
 J. Comp. Appl. Math
, 1996
"... Abstract. A hierarchical scheme is presented for smoothly interpolating scattered data with radial basis functions of compact support. A nested sequence of subsets of the data is computed efficiently using successive Delaunay triangulations. The scale of the basis function at each level is determine ..."
Abstract

Cited by 80 (12 self)
 Add to MetaCart
(Show Context)
Abstract. A hierarchical scheme is presented for smoothly interpolating scattered data with radial basis functions of compact support. A nested sequence of subsets of the data is computed efficiently using successive Delaunay triangulations. The scale of the basis function at each level is determined from the current density of the points using information from the triangulation. The method is rotationally invariant and has good reproduction properties. Moreover the solution can be calculated and evaluated in acceptable computing time. During the last two decades radial basis functions have become a well established tool for multivariate interpolation of both scattered and gridded data; see [2,7,8,22,25] for some surveys. The major part
Creating Surfaces from Scattered Data Using Radial Basis Functions
 in Mathematical Methods for Curves and Surfaces
, 1995
"... . This paper gives an introduction to certain techniques for the construction of geometric objects from scattered data. Special emphasis is put on interpolation methods using compactly supported radial basis functions. x1. Introduction We assume a sample of multivariate scattered data to be given a ..."
Abstract

Cited by 71 (12 self)
 Add to MetaCart
. This paper gives an introduction to certain techniques for the construction of geometric objects from scattered data. Special emphasis is put on interpolation methods using compactly supported radial basis functions. x1. Introduction We assume a sample of multivariate scattered data to be given as a set X = fx 1 ; : : : ; xN g of N pairwise distinct points x 1 ; : : : ; xN in IR d , called centers, together with N points y 1 ; : : : ; yN in IR D . An interpolating curve, surface, or solid to these data will be the range of a smooth function s : IR d oe\Omega ! IR D with s(x k ) = y k ; 1 k N: (1) Likewise, an approximating curve, surface, or solid will make the differences s(x j ) \Gamma y j small, for instance in the discrete L 2 sense, i.e. N X k=1 ks(x k ) \Gamma y k k 2 2 should be small. Curves, surfaces, and solids will only differ by their appropriate value of d = 1; 2, or 3. We use the term (geometric) objects to stand for curves, surfaces, or solids. Not...
Error Estimates for Interpolation By Compactly Supported Radial Basis Functions of Minimal Degree
, 1997
"... We consider error estimates for the interpolation by a special class of compactly supported radial basis functions. These functions consist of a univariate polynomial within their support and are of minimal degree depending on space dimension and smoothness. Their associated "native" Hilb ..."
Abstract

Cited by 67 (7 self)
 Add to MetaCart
We consider error estimates for the interpolation by a special class of compactly supported radial basis functions. These functions consist of a univariate polynomial within their support and are of minimal degree depending on space dimension and smoothness. Their associated "native" Hilbert spaces are shown to be normequivalent to Sobolev spaces. Thus we can derive approximation orders for functions from Sobolev spaces which are comparable to those of thinplatespline interpolation. Finally, we investigate the numerical stability of the interpolation process.
Exponential integrators
, 2010
"... In this paper we consider the construction, analysis, implementation and application of exponential integrators. The focus will be on two types of stiff problems. The first one is characterized by a Jacobian that possesses eigenvalues with large negative real parts. Parabolic partial differential eq ..."
Abstract

Cited by 67 (5 self)
 Add to MetaCart
(Show Context)
In this paper we consider the construction, analysis, implementation and application of exponential integrators. The focus will be on two types of stiff problems. The first one is characterized by a Jacobian that possesses eigenvalues with large negative real parts. Parabolic partial differential equations and their spatial discretization are typical examples. The second class consists of highly oscillatory problems with purely imaginary eigenvalues of large modulus. Apart from motivating the construction of exponential integrators for various classes of problems, our main intention in this article is to present the mathematics behind these methods. We will derive error bounds that are independent of stiffness or highest frequencies in the system. Since the implementation of exponential integrators requires the evaluation of the product of a matrix function with a vector, we will briefly discuss some possible approaches as well. The paper concludes with some applications, in
On approximate approximations using Gaussian kernels
 IMA Journal of Numerical Analysis
, 1996
"... This paper discusses quasiinterpolation and interpolation with Gaussians from a new point of view concerning accuracy in numerical computations. Estimates are obtained showing a high order approximation up to some saturation error negligible in numerical applications. The construction of local hig ..."
Abstract

Cited by 50 (8 self)
 Add to MetaCart
This paper discusses quasiinterpolation and interpolation with Gaussians from a new point of view concerning accuracy in numerical computations. Estimates are obtained showing a high order approximation up to some saturation error negligible in numerical applications. The construction of local high order quasiinterpolation formulas is given.
Multivariate Interpolation and Approximation by Translates of a Basis Function
, 1995
"... . This contribution will touch the following topics: ffl Short introduction into the theory of multivariate interpolation and approximation by finitely many (irregular) translates of a (not necessarily radial) basis function, motivated by optimal recovery of functions from discrete samples. ffl Na ..."
Abstract

Cited by 44 (9 self)
 Add to MetaCart
(Show Context)
. This contribution will touch the following topics: ffl Short introduction into the theory of multivariate interpolation and approximation by finitely many (irregular) translates of a (not necessarily radial) basis function, motivated by optimal recovery of functions from discrete samples. ffl Native spaces of functions associated to conditionally positive definite functions, and relations between such spaces. ffl Error bounds and condition numbers for interpolation of functions from native spaces. ffl Uncertainty Relation: Why are good error bounds always tied to bad condition numbers? ffl Shift and Scale: How to cope with the Uncertainty Relation? x1. Introduction and Overview This contribution contains the author's view of a certain area of multivariate interpolation and approximation. It is not intended to be a complete survey of a larger area of research, and it will not account for the history of the theory it deals with. Related surveys are [15, 21, 22, 27, 30, 47, 48, 58...
Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions
, 2003
"... ..."
(Show Context)
Meshless Galerkin methods using radial basis functions
 Math. Comp
, 1999
"... Abstract. We combine the theory of radial basis functions with the field of Galerkin methods to solve partial differential equations. After a general description of the method we show convergence and derive error estimates for smooth problems in arbitrary dimensions. 1. ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
(Show Context)
Abstract. We combine the theory of radial basis functions with the field of Galerkin methods to solve partial differential equations. After a general description of the method we show convergence and derive error estimates for smooth problems in arbitrary dimensions. 1.