Results 1 
7 of
7
A Judgmental Analysis of Linear Logic
, 2003
"... We reexamine the foundations of linear logic, developing a system of natural deduction following MartinL of's separation of judgments from propositions. Our construction yields a clean and elegant formulation that accounts for a rich set of multiplicative, additive, and exponential connectives ..."
Abstract

Cited by 58 (32 self)
 Add to MetaCart
(Show Context)
We reexamine the foundations of linear logic, developing a system of natural deduction following MartinL of's separation of judgments from propositions. Our construction yields a clean and elegant formulation that accounts for a rich set of multiplicative, additive, and exponential connectives, extending dual intuitionistic linear logic but differing from both classical linear logic and Hyland and de Paiva's full intuitionistic linear logic. We also provide a corresponding sequent calculus that admits a simple proof of the admissibility of cut by a single structural induction. Finally, we show how to interpret classical linear logic (with or without the MIX rule) in our system, employing a form of doublenegation translation.
Linear lambdaCalculus and Categorical Models Revisited
, 1992
"... this paper we shall consider multiplicative exponential linear logic (MELL), i.e. the fragment which has multiplicative conjunction or tensor,\Omega , linear implication, \Gammaffi, and the logical operator "exponential", !. We recall the rules for MELL in a sequent calculus system in Fig ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
this paper we shall consider multiplicative exponential linear logic (MELL), i.e. the fragment which has multiplicative conjunction or tensor,\Omega , linear implication, \Gammaffi, and the logical operator "exponential", !. We recall the rules for MELL in a sequent calculus system in Fig. 1. We use capital Greek letters \Gamma; \Delta for sequences of formulae and A; B for single formulae. The Exchange rule simply allows the permutation of assumptions. The `! rules' have been given names by other authors. ! L\Gamma1 is called Weakening , ! L\Gamma2 Contraction, ! L\Gamma3 Dereliction and (! R ) Promotion
From proof nets to the free * autonomous category
 Logical Methods in Computer Science, 2(4:3):1–44, 2006. Available from: http://arxiv.org/abs/cs/0605054. [McK05] Richard McKinley. Classical categories and deep inference. In Structures and Deduction 2005 (Satellite Workshop of ICALP’05
, 2005
"... Vol. 2 (4:3) 2006, pp. 1–44 www.lmcsonline.org ..."
On the axiomatisation of boolean categories with and without medial
 THEORY APPL. CATEG
, 2007
"... ..."
Proof theory in the abstract
 Ann. Pure Appl. Logic
, 2002
"... with great affection and respect, this small tribute to his influence. 1 Background In the Introduction to the recent text Troelstra and Schwichtenberg [44], the authors contrast structural proof theory on the one hand with interpretational proof theory on the other. They write thus. Structural proo ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
(Show Context)
with great affection and respect, this small tribute to his influence. 1 Background In the Introduction to the recent text Troelstra and Schwichtenberg [44], the authors contrast structural proof theory on the one hand with interpretational proof theory on the other. They write thus. Structural proof theory is based on a combinatorial analysis of the structure of formal proofs; the central methods are cut elimination
Linear logical reasoning on programming
 In: Acta Electrotechnica et Informatica
"... In our paper we follow the development of our approach of regarding programming as logical reasoning in intuitionistic linear logic. We present basic notions of linear logic and its deduction system and we define categorical semantics of linear logic as a symmetric monoidal closed category. Then we ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
In our paper we follow the development of our approach of regarding programming as logical reasoning in intuitionistic linear logic. We present basic notions of linear logic and its deduction system and we define categorical semantics of linear logic as a symmetric monoidal closed category. Then we construct linear type theory over linear Church’s types involving linear calculus with equational axioms. We conclude with the interpretation of the linear type theory in symmetric monoidal closed category. Defined entities included in our whole linear logical system give us a possible mean for deduction and reduction of problem solving in the framework of mathematics and computer science.