Results 1  10
of
55
Categorical Logic
 A CHAPTER IN THE FORTHCOMING VOLUME VI OF HANDBOOK OF LOGIC IN COMPUTER SCIENCE
, 1995
"... ..."
A Judgmental Analysis of Linear Logic
, 2003
"... We reexamine the foundations of linear logic, developing a system of natural deduction following MartinL of's separation of judgments from propositions. Our construction yields a clean and elegant formulation that accounts for a rich set of multiplicative, additive, and exponential connectives ..."
Abstract

Cited by 61 (33 self)
 Add to MetaCart
(Show Context)
We reexamine the foundations of linear logic, developing a system of natural deduction following MartinL of's separation of judgments from propositions. Our construction yields a clean and elegant formulation that accounts for a rich set of multiplicative, additive, and exponential connectives, extending dual intuitionistic linear logic but differing from both classical linear logic and Hyland and de Paiva's full intuitionistic linear logic. We also provide a corresponding sequent calculus that admits a simple proof of the admissibility of cut by a single structural induction. Finally, we show how to interpret classical linear logic (with or without the MIX rule) in our system, employing a form of doublenegation translation.
CallbyName, CallbyValue, CallbyNeed, and the Linear Lambda Calculus
, 1994
"... Girard described two translations of intuitionistic logic into linear logic, one where A > B maps to (!A) o B, and another where it maps to !(A o B). We detail the action of these translations on terms, and show that the first corresponds to a callbyname calculus, while the second correspond ..."
Abstract

Cited by 39 (6 self)
 Add to MetaCart
(Show Context)
Girard described two translations of intuitionistic logic into linear logic, one where A > B maps to (!A) o B, and another where it maps to !(A o B). We detail the action of these translations on terms, and show that the first corresponds to a callbyname calculus, while the second corresponds to callbyvalue. We further show that if the target of the translation is taken to be an affine calculus, where ! controls contraction but weakening is allowed everywhere, then the second translation corresponds to a callbyneed calculus, as recently defined by Ariola, Felleisen, Maraist, Odersky, and Wadler. Thus the different calling mechanisms can be explained in terms of logical translations, bringing them into the scope of the CurryHoward isomorphism.
A Relevant Analysis of Natural Deduction
 Journal of Logic and Computation
, 1999
"... Linear and other relevant logics have been studied widely in mathematical, philosophical and computational logic. We describe a logical framework, RLF, for defining natural deduction presentations of such logics. RLF consists in a language together, in a manner similar to that of Harper, Honsell and ..."
Abstract

Cited by 28 (7 self)
 Add to MetaCart
(Show Context)
Linear and other relevant logics have been studied widely in mathematical, philosophical and computational logic. We describe a logical framework, RLF, for defining natural deduction presentations of such logics. RLF consists in a language together, in a manner similar to that of Harper, Honsell and Plotkin's LF, with a representation mechanism: the language of RLF is the lLcalculus; the representation mechanism is judgementsastypes, developed for relevant logics. The lLcalculus type theory is a firstorder dependent type theory with two kinds of dependent function spaces: a linear one and an intuitionistic one. We study a natural deduction presentation of the type theory and establish the required prooftheoretic metatheory. The RLF framework is a conservative extension of LF. We show that RLF uniformly encodes (fragments of) intuitionistic linear logic, Curry's l I calculus and ML with references. We describe the CurryHowardde Bruijn correspondence of the lLcalculus with a s...
Intuitionistic Necessity Revisited
 PROCEEDINGS OF THE LOGIC AT WORK CONFERENCE
, 1996
"... In this paper we consider an intuitionistic modal logic, which we call IS42 . Our approach is different to others in that we favour the natural deduction and sequent calculus proof systems rather than the axiomatic, or Hilbertstyle, system. Our natural deduction formulation is simpler than other pr ..."
Abstract

Cited by 25 (7 self)
 Add to MetaCart
In this paper we consider an intuitionistic modal logic, which we call IS42 . Our approach is different to others in that we favour the natural deduction and sequent calculus proof systems rather than the axiomatic, or Hilbertstyle, system. Our natural deduction formulation is simpler than other proposals. The traditional means of devising a modal logic is with reference to a model, and almost always, in terms of a Kripke model. Again our approach is different in that we favour categorical models. This facilitates not only a more abstract definition of a whole class of models but also a means of modelling proofs as well as provability.
Adjoint Rewriting
, 1995
"... This thesis concerns rewriting in the typed calculus. Traditional categorical models of typed calculus use concepts such as functor, adjunction and algebra to model type constructors and their associated introduction and elimination rules, with the natural categorical equations inherent in these s ..."
Abstract

Cited by 24 (11 self)
 Add to MetaCart
This thesis concerns rewriting in the typed calculus. Traditional categorical models of typed calculus use concepts such as functor, adjunction and algebra to model type constructors and their associated introduction and elimination rules, with the natural categorical equations inherent in these structures providing an equational theory for terms. One then seeks a rewrite relation which, by transforming terms into canonical forms, provides a decision procedure for this equational theory. Unfortunately the rewrite relations which have been proposed, apart from for the most simple of calculi, either generate the full equational theory but contain no decision procedure, or contain a decision procedure but only for a subtheory of that required. Our proposal is to unify the semantics and reduction theory of the typed calculus by generalising the notion of model from categorical structures based on term equality to categorical structures based on term reduction. This is accomplished via...
About Translations of Classical Logic into Polarized Linear Logic
 IN PROCEEDINGS OF THE EIGHTEENTH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE
, 2003
"... We show that the decomposition of Intuitionistic Logic into Linear Logic along the equation A ! B = !A ( B may be adapted into a decomposition of classical logic into LLP, the polarized version of Linear Logic. Firstly we build a categorical model of classical logic (a Control Category) from a categ ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
(Show Context)
We show that the decomposition of Intuitionistic Logic into Linear Logic along the equation A ! B = !A ( B may be adapted into a decomposition of classical logic into LLP, the polarized version of Linear Logic. Firstly we build a categorical model of classical logic (a Control Category) from a categorical model of Linear Logic by a construction similar to the coKleisli category. Secondly we analyse two standard ContinuationPassing Style (CPS) translations, the Plotkin and the Krivine's translations, which are shown to correspond to two embeddings of LLP into LL.
Functorial boxes in string diagrams
, 2006
"... String diagrams were introduced by Roger Penrose as a handy notation to manipulate morphisms in a monoidal category. In principle, this graphical notation should encompass the various pictorial systems introduced in prooftheory (like JeanYves Girard’s proofnets) and in concurrency theory (like Ro ..."
Abstract

Cited by 16 (3 self)
 Add to MetaCart
String diagrams were introduced by Roger Penrose as a handy notation to manipulate morphisms in a monoidal category. In principle, this graphical notation should encompass the various pictorial systems introduced in prooftheory (like JeanYves Girard’s proofnets) and in concurrency theory (like Robin Milner’s bigraphs). This is not the case however, at least because string diagrams do not accomodate boxes — a key ingredient in these pictorial systems. In this short tutorial, based on our accidental rediscovery of an idea by Robin Cockett and Robert Seely, we explain how string diagrams may be extended with a notion of functorial box to depict a functor separating an inside world (its source category) from an outside world (its target category). We expose two elementary applications of the notation: first, we characterize graphically when a faithful balanced monoidal functor F: C − → D transports a trace operator from the category D
The Girard Translation Extended with Recursion
 In Proceedings of Computer Science Logic
, 1995
"... This paper extends CurryHoward interpretations of Intuitionistic Logic (IL) and Intuitionistic Linear Logic (ILL) with rules for recursion. The resulting term languages, the rec calculus and the linear rec calculus respectively, are given sound categorical interpretations. The embedding of ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
This paper extends CurryHoward interpretations of Intuitionistic Logic (IL) and Intuitionistic Linear Logic (ILL) with rules for recursion. The resulting term languages, the rec calculus and the linear rec calculus respectively, are given sound categorical interpretations. The embedding of proofs of IL into proofs of ILL given by the Girard Translation is extended with the rules for recursion, such that an embedding of terms of the rec calculus into terms of the linear rec calculus is induced via the extended CurryHoward isomorphisms. This embedding is shown to be sound with respect to the categorical interpretations. Full version of paper to appear in Proceedings of CSL '94, LNCS 933, 1995. y Basic Research in Computer Science, Centre of the Danish National Research Foundation. Contents 1 Introduction 4 2 The Categorical Picture 6 2.1 Previous Work and Related Results : : : : : : : : : : : : : : : : : : : : : : 6 2.2 How to deal with parameters : : : : : : : ...