Results 1  10
of
72
A Modal Analysis of Staged Computation
 JOURNAL OF THE ACM
, 1996
"... We show that a type system based on the intuitionistic modal logic S4 provides an expressive framework for specifying and analyzing computation stages in the context of functional languages. Our main technical result is a conservative embedding of Nielson & Nielson's twolevel functional la ..."
Abstract

Cited by 213 (23 self)
 Add to MetaCart
We show that a type system based on the intuitionistic modal logic S4 provides an expressive framework for specifying and analyzing computation stages in the context of functional languages. Our main technical result is a conservative embedding of Nielson & Nielson's twolevel functional language in our language MiniML, which in
Logics for Hybrid Systems
 Proceedings of the IEEE
, 2000
"... This paper offers a synthetic overview of, and original contributions to, the use of logics and formal methods in the analysis of hybrid systems ..."
Abstract

Cited by 138 (13 self)
 Add to MetaCart
(Show Context)
This paper offers a synthetic overview of, and original contributions to, the use of logics and formal methods in the analysis of hybrid systems
The ProofTheory and Semantics of Intuitionistic Modal Logic
, 1994
"... Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpret ..."
Abstract

Cited by 130 (0 self)
 Add to MetaCart
(Show Context)
Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpreted in an intuitionistic metatheory then the induced modal logics no longer satisfy certain intuitionistically invalid principles. This thesis investigates the intuitionistic modal logics that arise in this way. Natural deduction systems for various intuitionistic modal logics are presented. From one point of view, these systems are selfjustifying in that a possible world interpretation of the modalities can be read off directly from the inference rules. A technical justification is given by the faithfulness of translations into intuitionistic firstorder logic. It is also established that, in many cases, the natural deduction systems induce wellknown intuitionistic modal logics, previously given by Hilbertstyle axiomatizations. The main benefit of the natural deduction systems over axiomatizations is their
EXPTIME tableaux for ALC
 ARTIFICIAL INTELLIGENCE
, 2000
"... The last years have seen two major advances in Knowledge Representation and Reasoning. First, many interesting problems (ranging from Semistructured Data to Linguistics) were shown to be expressible in logics whose main deductive problems are EXPTIMEcomplete. Second, experiments in automated reaso ..."
Abstract

Cited by 58 (4 self)
 Add to MetaCart
The last years have seen two major advances in Knowledge Representation and Reasoning. First, many interesting problems (ranging from Semistructured Data to Linguistics) were shown to be expressible in logics whose main deductive problems are EXPTIMEcomplete. Second, experiments in automated reasoning have substantially broadened the meaning of “practical tractability”. Instances of realistic size for PSPACEcomplete problems are now within reach for implemented systems. Still, there is a gap between the reasoning services needed by the expressive logics mentioned above and those provided by the current systems. Indeed, the algorithms based on treeautomata, which are used to prove EXPTIMEcompleteness, require exponential time and space even in simple cases. On the other hand, current algorithms based on tableau methods can take advantage of such cases, but require double exponential time in the worst case. We propose a tableau calculus for the description logic ALC for checking the satisfiability of a concept with respect to a TBox with general axioms, and transform it into the first simple tableaubased decision procedure working in single exponential time. To guarantee the ease of implementation, we also discuss the effects that optimizations (propositional backjumping, simplification, semantic branching, etc.) might have on our complexity result, and introduce a few optimizations ourselves.
Semanticsbased translation methods for modal logics
 J. Log. Comput
, 1991
"... A general framework for translating logical formulae from one logic into another logic is presented. The framework is instantiated with two different approaches to translating modal logic formulae into predicate logic. The first one, the well known 'relational ' translation makes the moda ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
(Show Context)
A general framework for translating logical formulae from one logic into another logic is presented. The framework is instantiated with two different approaches to translating modal logic formulae into predicate logic. The first one, the well known 'relational ' translation makes the modal logic's possible worlds structure explicit by introducing a distinguished predicate symbol to represent the accessibility relation. In the second approach, the 'functional ' translation method, paths in the possible worlds structure are represented by compositions of functions which map worlds to accessible worlds. On the syntactic level this means that every flexible symbol is parametrized with particular terms denoting whole paths from the initial world to the actual world. The 'target logic ' for the translation is a firstorder manysorted logic with built in equality. Therefore the 'source logic ' may also be firstorder manysorted with built in equality. Furthermore flexible function symbols are allowed. The modal operators may be parametrized with arbitrary terms and particular properties of the accessibility relation may be specified within the logic itself.
Logicbased specification languages for intelligent software agents
 TPLP
, 2004
"... The research field of AgentOriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research subfield studies how formal ..."
Abstract

Cited by 29 (7 self)
 Add to MetaCart
The research field of AgentOriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research subfield studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logicbased executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGolog, AGENT0, the IMPACT agent programming language, Dylog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logicbased languages in MAS modeling and prototyping.
Dynamic topological logic
 ANNALS OF PURE AND APPLIED LOGIC
, 2005
"... Dynamic topological logic provides a context for studying the confluence of the topological semantics for S4, topological dynamics, and temporal logic. The topological semantics for S4 is based on topological spaces rather than Kripke frames. In this semantics, □ is interpreted as topological inter ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
Dynamic topological logic provides a context for studying the confluence of the topological semantics for S4, topological dynamics, and temporal logic. The topological semantics for S4 is based on topological spaces rather than Kripke frames. In this semantics, □ is interpreted as topological interior. Thus S4 can be understood as the logic of topological spaces, and □ can be understood as a topological modality. Topological dynamics studies the asymptotic properties of continuous maps on topological spaces. Let a dynamic topological system be a topological space X together with a continuous function f. f can be thought of in temporal terms, moving the points of the topological space from one moment to the next. Dynamic topological logics are the logics of dynamic topological systems, just as S4 is the logic of topological spaces. Dynamic topological logics are defined for a trimodal language with an S4ish topological modality □ (interior), and two temporal modalities, ○ (next) and ∗ (henceforth), both interpreted using the continuous function f. In particular, ○ expresses f ’s action on X from one moment to the next, and ∗ expresses the asymptotic behaviour of f.
Functional Translation and SecondOrder Frame Properties of Modal Logics
, 1995
"... Normal modal logics can be defined axiomatically as Hilbert systems, or semantically in terms of Kripke's possible worlds and accessibility relations. Unfortunately there are Hilbert axioms which do not have corresponding firstorder properties for the accessibility relation. For these logics ..."
Abstract

Cited by 25 (15 self)
 Add to MetaCart
Normal modal logics can be defined axiomatically as Hilbert systems, or semantically in terms of Kripke's possible worlds and accessibility relations. Unfortunately there are Hilbert axioms which do not have corresponding firstorder properties for the accessibility relation. For these logics the standard semanticsbased theorem proving techniques, in particular, the relational translation into firstorder predicate logic, do not work. There is an alternative translation, the socalled functional translation, in which the accessibility relations are replaced by certain terms which intuitively can be seen as functions mapping worlds to accessible worlds. In this paper we show that from a certain point of view this functional language is more expressive than the relational language, and that certain secondorder frame properties can be mapped to firstorder formulae expressed in the functional language. Moreover, we show how these formulae can be computed automatically from the ...
Pure extensions, proof rules and hybrid axiomatics
 Preliminary proceedings of Advances in Modal Logic (AiML 2004
, 2004
"... We examine the role played by proof rules in general axiomatisations for hybrid logic. We prove three main results. First, all known axiomatisations for the basic hybrid language ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
We examine the role played by proof rules in general axiomatisations for hybrid logic. We prove three main results. First, all known axiomatisations for the basic hybrid language
Modal Logic: A Semantic Perspective
 ETHICS
, 1988
"... This chapter introduces modal logic as a tool for talking about graphs, or to use more traditional terminology, as a tool for talking about Kripke models and frames. We want the reader to gain an intuitive appreciation of this perspective, and a firm grasp of the key technical ideas (such as bisimul ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
(Show Context)
This chapter introduces modal logic as a tool for talking about graphs, or to use more traditional terminology, as a tool for talking about Kripke models and frames. We want the reader to gain an intuitive appreciation of this perspective, and a firm grasp of the key technical ideas (such as bisimulations) which underly it. We introduce the syntax and semantics of basic modal logic, discuss its expressivity at the level of models, examine its computational properties, and then consider what it can say at the level of frames. We then move beyond the basic modal language, examine the kinds of expressivity offered by a number of richer modal logics, and try to pin down what it is that makes them all ‘modal’. We conclude by discussing an example which brings many of the ideas we discuss into play: games.