Results 1  10
of
57
Vertex Cover: Further Observations and Further Improvements
 Journal of Algorithms
, 1999
"... Recently, there have been increasing interests and progresses in lowering the worst case time complexity for wellknown NPhard problems, in particular for the Vertex Cover problem. In this paper, new properties for the Vertex Cover problem are indicated and several simple and new techniques are int ..."
Abstract

Cited by 151 (15 self)
 Add to MetaCart
Recently, there have been increasing interests and progresses in lowering the worst case time complexity for wellknown NPhard problems, in particular for the Vertex Cover problem. In this paper, new properties for the Vertex Cover problem are indicated and several simple and new techniques are introduced, which lead to an improved algorithm of time O(kn + 1:271 k k 2 ) for the problem. Our algorithm also induces improvement on previous algorithms for the Independent Set problem on graphs of small degree. 1 Introduction Many optimization problems from industrial applications are NPhard. According to the NPcompleteness theory [10], these problems cannot be solved in polynomial time unless P = NP. However, this fact does not obviate the need for solving these problems for their practical importance. There has been a number of approaches to attacking the NPhardness of optimization problems, including approximation algorithms, heuristic algorithms, and average time analysis. Recent...
Fixed Parameter Algorithms for Dominating Set and Related Problems on Planar Graphs
, 2002
"... We present an algorithm that constructively produces a solution to the kdominating set problem for planar graphs in time O(c . To obtain this result, we show that the treewidth of a planar graph with domination number (G) is O( (G)), and that such a tree decomposition can be found in O( (G)n) time. ..."
Abstract

Cited by 103 (23 self)
 Add to MetaCart
We present an algorithm that constructively produces a solution to the kdominating set problem for planar graphs in time O(c . To obtain this result, we show that the treewidth of a planar graph with domination number (G) is O( (G)), and that such a tree decomposition can be found in O( (G)n) time. The same technique can be used to show that the kface cover problem ( find a size k set of faces that cover all vertices of a given plane graph) can be solved in O(c n) time, where c 1 = 3 and k is the size of the face cover set. Similar results can be obtained in the planar case for some variants of kdominating set, e.g., kindependent dominating set and kweighted dominating set.
Disjoint pattern database heuristics
 Artificial Intelligence
, 2002
"... We explore a method for computing admissible heuristic evaluation functions for search problems. It utilizes pattern databases (Culberson & Schaeffer, 1998), which are precomputed tables of the exact cost of solving various subproblems of an existing problem. Unlike standard pattern database heurist ..."
Abstract

Cited by 102 (24 self)
 Add to MetaCart
We explore a method for computing admissible heuristic evaluation functions for search problems. It utilizes pattern databases (Culberson & Schaeffer, 1998), which are precomputed tables of the exact cost of solving various subproblems of an existing problem. Unlike standard pattern database heuristics, however, we partition our problems into disjoint subproblems, so that the costs of solving the different subproblems can be added together without overestimating the cost of solving the original problem. Previously (Korf & Felner, 2002) we showed how to statically partition the slidingtile puzzles into disjoint groups of tiles to compute an admissible heuristic, using the same partition for each state and problem instance. Here we extend the method and show that it applies to other domains as well. We also present another method for additive heuristics which we call dynamically partitioned pattern databases. Here we partition the problem into disjoint subproblems for each state of the search dynamically. We discuss the pros and cons of each of these methods and apply both methods to three different problem domains: the slidingtile puzzles, the 4peg Towers of Hanoi problem, and finding an optimal vertex cover of a graph. We find that in some problem domains, static partitioning is most effective, while in others dynamic partitioning is a better choice. In each of these problem domains, either statically partitioned or dynamically partitioned pattern database heuristics are the best known heuristics for the problem.
Parameterized Complexity: Exponential SpeedUp for Planar Graph Problems
 in Electronic Colloquium on Computational Complexity (ECCC
, 2001
"... A parameterized problem is xed parameter tractable if it admits a solving algorithm whose running time on input instance (I; k) is f(k) jIj , where f is an arbitrary function depending only on k. Typically, f is some exponential function, e.g., f(k) = c k for constant c. We describe general techniqu ..."
Abstract

Cited by 62 (21 self)
 Add to MetaCart
A parameterized problem is xed parameter tractable if it admits a solving algorithm whose running time on input instance (I; k) is f(k) jIj , where f is an arbitrary function depending only on k. Typically, f is some exponential function, e.g., f(k) = c k for constant c. We describe general techniques to obtain growth of the form f(k) = c p k for a large variety of planar graph problems. The key to this type of algorithm is what we call the "Layerwise Separation Property" of a planar graph problem. Problems having this property include planar vertex cover, planar independent set, and planar dominating set.
A General Method to Speed Up FixedParameterTractable Algorithms
, 1999
"... A xedparametertractable algorithm, or FPT algorithm for short, gets an instance (I; k) as its input and has to decide whether (I; k) 2 L for some parameterized problem L. Many parameterized algorithms work in two stages: reduction to a problem kernel and bounded search tree. Their time complexity ..."
Abstract

Cited by 45 (17 self)
 Add to MetaCart
A xedparametertractable algorithm, or FPT algorithm for short, gets an instance (I; k) as its input and has to decide whether (I; k) 2 L for some parameterized problem L. Many parameterized algorithms work in two stages: reduction to a problem kernel and bounded search tree. Their time complexity is then of the form O(p(jIj) + q(k) k ), where q(k) is the size of the problem kernel. We show how to modify these algorithms to obtain time complexity O(p(jIj) + k ), if q(k) is polynomial. Key words: Algorithms, Parametrized Complexity 1 Introduction A parameterized problem usually consists of two componentsthe input and aspects of the input that constitute a parameter. For example, the NPcomplete Vertex Cover problem has an undirected graph G as its input and a positive integer k as its parameter; the question is whether there is a set of at most k vertices that cover all edges in G. The central question of parameterized complexity theory [5] is as follows: Given a parameter...
Upper Bounds for Vertex Cover Further Improved
"... . The problem instance of Vertex Cover consists of an undirected graph G = (V; E) and a positive integer k, the question is whether there exists a subset C V of vertices such that each edge in E has at least one of its endpoints in C with jCj k. We improve two recent worst case upper bounds fo ..."
Abstract

Cited by 43 (17 self)
 Add to MetaCart
. The problem instance of Vertex Cover consists of an undirected graph G = (V; E) and a positive integer k, the question is whether there exists a subset C V of vertices such that each edge in E has at least one of its endpoints in C with jCj k. We improve two recent worst case upper bounds for Vertex Cover. First, Balasubramanian et al. showed that Vertex Cover can be solved in time O(kn + 1:32472 k k 2 ), where n is the number of vertices in G. Afterwards, Downey et al. improved this to O(kn+ 1:31951 k k 2 ). Bringing the exponential base significantly below 1:3, we present the new upper bound O(kn + 1:29175 k k 2 ). 1 Introduction Vertex Cover is a problem of central importance in computer science: { It was among the rst NPcomplete problems [7]. { There have been numerous eorts to design ecient approximation algorithms [3], but it is also known to be hard to approximate [1]. { It is of central importance in parameterized complexity theory and has one ...
Subexponential Parameterized Algorithms Collapse the Whierarchy (Extended Abstract)
, 2001
"... It is shown that for essentially all MAX SNPhard optimization problems finding exact solutions in subexponential time is not possible unless W [1] = FPT . In particular, we show that O(2 o(k) p(n)) parameterized algorithms do not exist for Vertex Cover, Max Cut, Max cSat, and a number of pr ..."
Abstract

Cited by 38 (2 self)
 Add to MetaCart
It is shown that for essentially all MAX SNPhard optimization problems finding exact solutions in subexponential time is not possible unless W [1] = FPT . In particular, we show that O(2 o(k) p(n)) parameterized algorithms do not exist for Vertex Cover, Max Cut, Max cSat, and a number of problems on bounded degree graphs such as Dominating Set and Independent Set, unless W [1] = FPT . Our results are derived via an approach that uses an extended parameterization of optimization problems and associated techniques to relate the parameterized complexity of problems in FPT to the parameterized complexity of extended versions that are W [1]hard.
New Upper Bounds for Maximum Satisfiability
 Journal of Algorithms
, 1999
"... The (unweighted) Maximum Satisfiability problem (MaxSat) is: given a boolean formula in conjunctive normal form, find a truth assignment that satisfies the most number of clauses. This paper describes exact algorithms that provide new upper bounds for MaxSat. We prove that MaxSat can be solved i ..."
Abstract

Cited by 36 (2 self)
 Add to MetaCart
The (unweighted) Maximum Satisfiability problem (MaxSat) is: given a boolean formula in conjunctive normal form, find a truth assignment that satisfies the most number of clauses. This paper describes exact algorithms that provide new upper bounds for MaxSat. We prove that MaxSat can be solved in time O(F  1.3803 K ), where F  is the length of a formula F in conjunctive normal form and K is the number of clauses in F . We also prove the time bounds O(F 1.3995 k ), where k is the maximum number of satisfiable clauses, and O(1.1279 F  ) for the same problem. For Max2Sat this implies a bound of O(1.2722 K ). # An extended abstract of this paper was presented at the 26th International Colloquium on Automata, Languages, and Programming (ICALP'99), LNCS 1644, SpringerVerlag, pages 575584, held in Prague, Czech Republic, July 1115, 1999. + Supported by a Feodor Lynen fellowship (1998) of the Alexander von HumboldtStiftung, Bonn, and the Center for Discrete Ma...
Parametric duality and kernelization: lower bounds and upper bounds on kernel size
 In Proc. 22nd STACS, volume 3404 of LNCS
, 2005
"... Abstract. Determining whether a parameterized problem is kernelizable and has a small kernel size has recently become one of the most interesting topics of research in the area of parameterized complexity and algorithms. Theoretically, it has been proved that a parameterized problem is kernelizable ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
Abstract. Determining whether a parameterized problem is kernelizable and has a small kernel size has recently become one of the most interesting topics of research in the area of parameterized complexity and algorithms. Theoretically, it has been proved that a parameterized problem is kernelizable if and only if it is fixedparameter tractable. Practically, applying a data reduction algorithm to reduce an instance of a parameterized problem to an equivalent smaller instance (i.e., a kernel) has led to very efficient algorithms and now goes handinhand with the design of practical algorithms for solving NPhard problems. Wellknown examples of such parameterized problems include the vertex cover problem, which is kernelizable to a kernel of size bounded by 2k, and the planar dominating set problem, which is kernelizable to a kernel of size bounded by 335k. In this paper we develop new techniques to derive upper and lower bounds on the kernel size for certain parameterized problems. In terms of our lower bound results, we show, for example, that unless P = NP, planar vertex cover does not have a problem kernel of size smaller than 4k/3, and planar independent set and planar dominating set do not have kernels of size smaller than 2k. In terms of our upper bound results, we further reduce the upper bound on the kernel size for the planar dominating set problem to 67k, improving significantly the 335k previous upper bound given by Alber, Fellows, and Niedermeier [J. ACM, 51 (2004), pp. 363–384]. This latter result is obtained by introducing a new set of reduction and coloring rules, which allows the derivation of nice combinatorial properties in the kernelized graph leading to a tighter bound on the size of the kernel. The paper also shows how this improved upper bound yields a simple and competitive algorithm for the planar dominating set problem.