Results 1  10
of
76
A primaldual approximation algorithm for generalized Steiner network problems
 Combinatorica
, 1995
"... M.I.T. We present the first polynomialtime approximation algorithm for finding a minimumcost subgraph having at least a specified number of edges in each cut. This class of problems includes, among others, the generalized Steiner network problem, also called the survivable network design problem. ..."
Abstract

Cited by 81 (18 self)
 Add to MetaCart
M.I.T. We present the first polynomialtime approximation algorithm for finding a minimumcost subgraph having at least a specified number of edges in each cut. This class of problems includes, among others, the generalized Steiner network problem, also called the survivable network design problem. If k is the maximum cut requirement of the problem, our solution comes within a factor of 2k of optimal. Our algorithm is primaldual and shows the importance of this technique in designing approximation algorithms. 1
Improved Approximation Algorithms for Uniform Connectivity Problems
 J. Algorithms
"... The problem of finding minimum weight spanning subgraphs with a given connectivity requirement is considered. The problem is NPhard when the connectivity requirement is greater than one. Polynomial time approximation algorithms for various weighted and unweighted connectivity problems are given. Th ..."
Abstract

Cited by 71 (2 self)
 Add to MetaCart
The problem of finding minimum weight spanning subgraphs with a given connectivity requirement is considered. The problem is NPhard when the connectivity requirement is greater than one. Polynomial time approximation algorithms for various weighted and unweighted connectivity problems are given. The following results are presented: 1. For the unweighted kedgeconnectivity problem an approximation algorithm that achieves a performance ratio of 1.85 is described. This is the first polynomialtime algorithm that achieves a constant less than 2, for all k. 2. For the weighted kvertexconnectivity problem, a constant factor approximation algorithm is given assuming that the edgeweights satisfy the triangle inequality. This is the first constant factor approximation algorithm for this problem. 3. For the case of biconnectivity, with no assumptions about the weights of the edges, an algorithm that achieves a factor asymptotically approaching 2 is described. This matches the previous best...
RANDOM SAMPLING IN CUT, FLOW, AND NETWORK DESIGN PROBLEMS
, 1999
"... We use random sampling as a tool for solving undirected graph problems. We show that the sparse graph, or skeleton, that arises when we randomly sample a graph’s edges will accurately approximate the value of all cuts in the original graph with high probability. This makes sampling effective for pro ..."
Abstract

Cited by 70 (11 self)
 Add to MetaCart
We use random sampling as a tool for solving undirected graph problems. We show that the sparse graph, or skeleton, that arises when we randomly sample a graph’s edges will accurately approximate the value of all cuts in the original graph with high probability. This makes sampling effective for problems involving cuts in graphs. We present fast randomized (Monte Carlo and Las Vegas) algorithms for approximating and exactly finding minimum cuts and maximum flows in unweighted, undirected graphs. Our cutapproximation algorithms extend unchanged to weighted graphs while our weightedgraph flow algorithms are somewhat slower. Our approach gives a general paradigm with potential applications to any packing problem. It has since been used in a nearlinear time algorithm for finding minimum cuts, as well as faster cut and flow algorithms. Our sampling theorems also yield faster algorithms for several other cutbased problems, including approximating the best balanced cut of a graph, finding a kconnected orientation of a 2kconnected graph, and finding integral multicommodity flows in graphs with a great deal of excess capacity. Our methods also improve the efficiency of some parallel cut and flow algorithms. Our methods also apply to the network design problem, where we wish to build a network satisfying certain connectivity requirements between vertices. We can purchase edges of various costs and wish to satisfy the requirements at minimum total cost. Since our sampling theorems apply even when the sampling probabilities are different for different edges, we can apply randomized rounding to solve network design problems. This gives approximation algorithms that guarantee much better approximations than previous algorithms whenever the minimum connectivity requirement is large. As a particular example, we improve the best approximation bound for the minimum kconnected subgraph problem from 1.85 to 1 � O(�log n)/k).
Approximating minimum cost connectivity problems
 58 in Approximation algorithms and Metaheuristics, Editor
, 2007
"... ..."
Approximation Algorithms for Finding Highly Connected Subgraphs
, 1996
"... Contents 1 Introduction 2 1.1 Outline of Chapter : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2 EdgeConnectivity Problems 3 2.1 Weighted EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 Unweighted EdgeConnectivity : : : : : ..."
Abstract

Cited by 60 (1 self)
 Add to MetaCart
Contents 1 Introduction 2 1.1 Outline of Chapter : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2 EdgeConnectivity Problems 3 2.1 Weighted EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 Unweighted EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.2.1 2 EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.2.2 EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 3 VertexConnectivity Problems 11 3.1 Weighted VertexConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11 3.2 Unweighted VertexConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12 3.2.1 2 VertexConnectivity : : : : : : : : : : : : : : : : :
Power Optimization in FaultTolerant Topology Control Algorithms for Wireless Multihop Networks
 in Proceedings of the 9th Annual International Conference on Mobile Computing and Networking. 2003
, 2003
"... In ad hoc wireless networks, it is crucial to minimize power consumption while maintaining key network properties. This work studies power assignments of wireless devices that minimize power while maintaining kfault tolerance. Specifically, we require all links established by this power setting be ..."
Abstract

Cited by 56 (7 self)
 Add to MetaCart
In ad hoc wireless networks, it is crucial to minimize power consumption while maintaining key network properties. This work studies power assignments of wireless devices that minimize power while maintaining kfault tolerance. Specifically, we require all links established by this power setting be symmetric and form a kvertex connected subgraph of the network graph. This problem is known to be NPhard. We show current heuristic approaches can use arbitrarily more power than the optimal solution. Hence, we seek approximation algorithms for this problem. We present three approximation algorithms. The first algorithm gives an O(kα)approximation where α is the best approximation factor for the related problem in wired networks (the best α so far is O(log k).) With a more careful analysis, we show our second (slightly more complicated) algorithm is an O(k)approximation. Our third algorithm assumes that the edge lengths of the network graph form a metric. In this case, we present simple and practical distributed algorithms for the cases of 2 and 3connectivity with constant approximation factors. We generalize this algorithm to obtain an O(k 2c+2)approximation for general kconnectivity (2 ≤ c ≤ 4 is the power attenuation exponent). Finally, we show that these approximation algorithms compare favorably with existing heuristics. We note that all algorithms presented in this paper can be used to minimize power while maintaining kedge connectivity with guaranteed approximation factors.
An Efficient Approximation Algorithm for the Survivable Network Design Problem
 IN PROCEEDINGS OF THE THIRD MPS CONFERENCE ON INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION
, 1993
"... The survivable network design problem is to construct a minimumcost subgraph satisfying certain given edgeconnectivity requirements. The first polynomialtime approximation algorithm was given by Williamson et al. [20]. This paper gives an improved version that is more efficient. Consider a graph ..."
Abstract

Cited by 50 (7 self)
 Add to MetaCart
The survivable network design problem is to construct a minimumcost subgraph satisfying certain given edgeconnectivity requirements. The first polynomialtime approximation algorithm was given by Williamson et al. [20]. This paper gives an improved version that is more efficient. Consider a graph
Approximating MinimumSize kConnected Spanning Subgraphs via Matching
 SIAM J. Comput
, 1998
"... Abstract: An efficient heuristic is presented for the problem of finding a minimumsize k connected spanning subgraph of an (undirected or directed) simple graph G =(V#E). There are four versions of the problem, and the approximation guarantees are as follows: minimumsize knode connected spann ..."
Abstract

Cited by 35 (3 self)
 Add to MetaCart
Abstract: An efficient heuristic is presented for the problem of finding a minimumsize k connected spanning subgraph of an (undirected or directed) simple graph G =(V#E). There are four versions of the problem, and the approximation guarantees are as follows: minimumsize knode connected spanning subgraph of an undirected graph 1+[1=k], minimumsize knode connected spanning subgraph of a directed graph 1+[1=k], minimumsize kedge connected spanning subgraph of an undirected graph 1+[2=(k + 1)], and minimumsize kedge connected spanning subgraph of a directed graph 1+[4= p k].
Approximating The Minimum Equivalent Digraph
, 1995
"... . The MEG (minimum equivalent graph) problem is the following: "Given a directed graph, find a smallest subset of the edges that maintains all reachability relations between nodes." This problem is NPhard; this paper gives an approximation algorithm achieving a performance guarantee of about 1:64 i ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
. The MEG (minimum equivalent graph) problem is the following: "Given a directed graph, find a smallest subset of the edges that maintains all reachability relations between nodes." This problem is NPhard; this paper gives an approximation algorithm achieving a performance guarantee of about 1:64 in polynomial time. The algorithm achieves a performance guarantee of 1:75 in the time required for transitive closure. The heart of the MEG problem is the minimum SCSS (strongly connected spanning subgraph) problem  the MEG problem restricted to strongly connected digraphs. For the minimum SCSS problem, the paper gives a practical, nearly lineartime implementation achieving a performance guarantee of 1:75. The algorithm and its analysis are based on the simple idea of contracting long cycles. The analysis applies directly to 2Exchange, a general "local improvement" algorithm, showing that its performance guarantee is 1:75. AMS subject classifications. 68R10, 90C27, 90C35, 05C85, 68Q20....