Results 1  10
of
16
tps: A theorem proving system for classical type theory
 Journal of Automated Reasoning
, 1996
"... This is a description of TPS, a theorem proving system for classical type theory (Church’s typed λcalculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a comb ..."
Abstract

Cited by 70 (6 self)
 Add to MetaCart
(Show Context)
This is a description of TPS, a theorem proving system for classical type theory (Church’s typed λcalculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction proofs. Examples of theorems which TPS can prove completely automatically are given to illustrate certain aspects of TPS’s behavior and problems of theorem proving in higherorder logic. 7
The TPS theorem proving system
 9th International Conference on Automated Deduction, Argonne, Illinois
, 1988
"... TPS is a theorem proving system for first and higherorder logic which runs in Common Lisp and can operate in automatic, semiautomatic, and interactive modes. As its logical language TPS uses the typed Acalculus [6], in which most theorems of mathematics can be expressed very directly. TPS can be ..."
Abstract

Cited by 28 (5 self)
 Add to MetaCart
TPS is a theorem proving system for first and higherorder logic which runs in Common Lisp and can operate in automatic, semiautomatic, and interactive modes. As its logical language TPS uses the typed Acalculus [6], in which most theorems of mathematics can be expressed very directly. TPS can be used to search for an expansion proof [10, 11] of a theorem, which represents in a nonredtmdant way the basic combinatorial information required to construct a proof of
System description: TPS: A theorem proving system for type theory
 Automated Deduction — CADE17; 17th Int. Conf. on Automated Deduction
, 2000
"... ..."
Solving for Set Variables in HigherOrder Theorem Proving
 Proceedings of the 18th International Conference on Automated Deduction
, 2002
"... In higherorder logic, we must consider literals with exible (set variable) heads. Set variables may be instantiated with logical formulas of arbitrary complexity. An alternative to guessing the logical structures of instantiations for set variables is to solve for sets satisfying constraints. U ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
In higherorder logic, we must consider literals with exible (set variable) heads. Set variables may be instantiated with logical formulas of arbitrary complexity. An alternative to guessing the logical structures of instantiations for set variables is to solve for sets satisfying constraints. Using the KnasterTarski Fixed Point Theorem [ 15 ] , constraints whose solutions require recursive de nitions can be solved as xed points of monotone set functions. In this paper, we consider an approach to higherorder theorem proving which intertwines conventional theorem proving in the form of mating search with generating and solving set constraints.
A Systematic Approach to Canonicity in the Classical Sequent Calculus
"... The sequent calculus is often criticized for requiring proofs to be laden with large volumes of lowlevel syntactic details that can obscure the essence of a given proof. Because each inference rule introduces only a single connective, cutfree sequent proofs can separate closely related steps—such ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
The sequent calculus is often criticized for requiring proofs to be laden with large volumes of lowlevel syntactic details that can obscure the essence of a given proof. Because each inference rule introduces only a single connective, cutfree sequent proofs can separate closely related steps—such as instantiating a block of quantifiers—by irrelevant noise. Moreover, the sequential nature of sequent proofs forces proof steps that are syntactically noninterfering and permutable to nevertheless be written in some arbitrary order. The sequent calculus thus lacks a notion of canonicity: proofs that should be considered essentially the same may not have a common syntactic form. To fix this problem, many researchers revolt against the sequent calculus and replace it with proof structures that are more parallel or geometric. Proofnets, matings, and atomic flows are examples of such revolutionary formalisms. In this paper, we propose taking, instead, an evolutionary approach to recover canonicity within the sequent calculus, an approach we illustrate for classical firstorder logic. We use a multifocused sequent system as our means of abstracting away the details from classical sequent proofs. We then show that, among the focused sequent proofs, the maximally multifocused proofs, which make the foci as parallel as possible, are canonical. Moreover, such proofs are isomorphic to expansion tree proofs—a well known, simple, and parallel generalization of Herbrand disjunctions—for classical firstorder logic. We thus provide a systematic method of recovering the essence of any sequent proof without abandoning the sequent calculus. 1
Classical proof forestry
 Annals of Pure and Applied Logic
"... Classical proof forests are a proof formalism for firstorder classical logic based on Herbrand’s Theorem and backtracking games in the style of Coquand. First described by Miller in a cutfree setting as an economical representation of firstorder and higherorder classical proof, defining features ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
(Show Context)
Classical proof forests are a proof formalism for firstorder classical logic based on Herbrand’s Theorem and backtracking games in the style of Coquand. First described by Miller in a cutfree setting as an economical representation of firstorder and higherorder classical proof, defining features of the forests are a strict focus on witnessing terms for quantifiers and the absence of inessential structure, or ‘bureaucracy’. This paper presents classical proof forests as a graphical proof formalism and investigates the possibility of composing forests by cutelimination. Cutreduction steps take the form of a local rewrite relation that arises from the structure of the forests in a natural way. Yet reductions, which are significantly different from those of the sequent calculus, are combinatorially intricate and do not exclude the possibility of infinite reduction traces, of which an example is given. Cutelimination, in the form of a weak normalisation theorem, is obtained using a modified version of the rewrite relation inspired by the gametheoretic interpretation of the forests. It is conjectured that the modified reduction relation is, in fact, strongly normalising. To be published in Annals of Pure and Applied Logic August 2010 1.
A Clausal Approach to Proof Analysis in SecondOrder Logic
 In Symposium on Logical Foundations of Computer Science (LFCS 2009), Lecture Notes in Computer Science
, 2009
"... Abstract. This work defines an extension CERES 2 of the firstorder cutelimination method CERES to the subclass of sequent calculus proofs in secondorder logic using quantifierfree comprehension. This extension is motivated by the fact that cutelimination can be used as a tool to extract informa ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
Abstract. This work defines an extension CERES 2 of the firstorder cutelimination method CERES to the subclass of sequent calculus proofs in secondorder logic using quantifierfree comprehension. This extension is motivated by the fact that cutelimination can be used as a tool to extract information from real mathematical proofs, and often a crucial part of such proofs is the definition of sets by formulas. This is expressed by the comprehension axiom scheme, which is representable in secondorder logic. At the core of CERES 2 lies the production of a set of clauses CL(ϕ) from a proof ϕ that is always unsatisfiable. From a resolution refutation γ of CL(ϕ), a proof without essential cuts can be constructed. The main theoretical obstacle in the extension of CERES to secondorder logic is the construction of this proof from γ. This issue is solved for the subclass considered in this paper. Moreover, we discuss the problems that have to be solved to extend CERES 2 to the complete class of secondorder proofs. Finally, the method is applied to a simple mathematical proof that involves induction and comprehension and the resulting proof is analyzed. 1
Some Observations on the Proof Theory of Second Order Propositional Multiplicative Linear Logic (Extended Abstract)
, 2007
"... We present two new aspects of the proof theory of MLL2. First, we will give a novel proof system in the framework of the calculus of structures. The main feature of the new system is the consequent use of deep inference. Due to the new freedom of permuting inference rules, we are able to observe a d ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
We present two new aspects of the proof theory of MLL2. First, we will give a novel proof system in the framework of the calculus of structures. The main feature of the new system is the consequent use of deep inference. Due to the new freedom of permuting inference rules, we are able to observe a decomposition theorem, which is not visible in the sequent calculus. Second, we show a new notion of (boxfree) proof nets which is inspired by the deep inference proof system. Nonetheless, the proof nets are independent from the deductive system. We have “sequentialisation” into the calculus of structures as well as into the sequent calculus. We present a notion of cut elimination which is terminating and confluent, and thus gives us a category of proof nets.
TPS: An Interactive and Automatic Tool for Proving Theorems of Type Theory
 Higher Order Logic Theorem Proving and Its Applications: 6th International Workshop, HUG '93, volume 780 of Lecture Notes in Computer Science
, 1994
"... This is a demonstration of TPS, a theorem proving system for classical type theory (Church's typed lcalculus). TPS can be used interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduc ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
This is a demonstration of TPS, a theorem proving system for classical type theory (Church's typed lcalculus). TPS can be used interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction proofs. CATEGORY: Demonstration 1. Introduction This presentation is a demonstration of TPS, a theorem proving system for classical type theory (Church's typed 3 lcalculus [14]) which has been under development at Carnegie Mellon University for a number of years. TPS is based on an approach to automated theorem proving called the mating method [2], which is essentially the same as the connection method developed independently by Bibel [13]. The mating method does not require reduction to clausal form. TPS handles two sorts of proofs, natural deduction proofs and expansion proofs. Natural deduction proofs are humanreadable formal proofs. An example of such a proof which was produced aut...