Results 1 
6 of
6
tps: A theorem proving system for classical type theory
 Journal of Automated Reasoning
, 1996
"... This is a description of TPS, a theorem proving system for classical type theory (Church’s typed λcalculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a comb ..."
Abstract

Cited by 69 (6 self)
 Add to MetaCart
This is a description of TPS, a theorem proving system for classical type theory (Church’s typed λcalculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction proofs. Examples of theorems which TPS can prove completely automatically are given to illustrate certain aspects of TPS’s behavior and problems of theorem proving in higherorder logic. 7
TPS: A TheoremProving System for Classical Type Theory
, 1996
"... . This is description of TPS, a theoremproving system for classical type theory (Church's typed #calculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a comb ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
. This is description of TPS, a theoremproving system for classical type theory (Church's typed #calculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction proofs. Examples of theorems that TPS can prove completely automatically are given to illustrate certain aspects of TPS's behavior and problems of theorem proving in higherorder logic. AMS Subject Classification: 0304, 68T15, 03B35, 03B15, 03B10. Key words: higherorder logic, type theory, mating, connection, expansion proof, natural deduction. 1. Introduction TPS is a theoremproving system for classical type theory ## (Church's typed #calculus [20]) which has been under development at Carnegie Mellon University for a number years. This paper gives a general...
System Description: TPS: A Theorem Proving System for Type Theory
, 2000
"... Introduction This is a brief update on the Tps automated theorem proving system for classical type theory, which was described in [3]. Manuals and information about obtaining Tps can be found at http://gtps.math.cmu.edu/tps.html. In Section 2 we discuss some examples of theorems which Tps can now ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
Introduction This is a brief update on the Tps automated theorem proving system for classical type theory, which was described in [3]. Manuals and information about obtaining Tps can be found at http://gtps.math.cmu.edu/tps.html. In Section 2 we discuss some examples of theorems which Tps can now prove automatically, and in Section 3 we discuss an example which illustrates one of the many challenges of theorem proving in higherorder logic. We rst provide a brief summary of the key features of Tps . Tps uses Church's type theory [8] (typed calculus) as its logical language. Ws are displayed on the screen and in printed proofs in the notation of this system of symbolic logic. One can use Tps in automatic, semiautomatic, or interactive mode to construct proofs in natural deduction style, and a mixture of these modes of operation is most useful fo
Solving for Set Variables in HigherOrder Theorem Proving
 Proceedings of the 18th International Conference on Automated Deduction
, 2002
"... In higherorder logic, we must consider literals with exible (set variable) heads. Set variables may be instantiated with logical formulas of arbitrary complexity. An alternative to guessing the logical structures of instantiations for set variables is to solve for sets satisfying constraints. U ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
In higherorder logic, we must consider literals with exible (set variable) heads. Set variables may be instantiated with logical formulas of arbitrary complexity. An alternative to guessing the logical structures of instantiations for set variables is to solve for sets satisfying constraints. Using the KnasterTarski Fixed Point Theorem [ 15 ] , constraints whose solutions require recursive de nitions can be solved as xed points of monotone set functions. In this paper, we consider an approach to higherorder theorem proving which intertwines conventional theorem proving in the form of mating search with generating and solving set constraints.
TPS: An Interactive and Automatic Tool for Proving Theorems of Type Theory
 Higher Order Logic Theorem Proving and Its Applications: 6th International Workshop, HUG '93, volume 780 of Lecture Notes in Computer Science
, 1994
"... This is a demonstration of TPS, a theorem proving system for classical type theory (Church's typed lcalculus). TPS can be used interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
This is a demonstration of TPS, a theorem proving system for classical type theory (Church's typed lcalculus). TPS can be used interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction proofs. CATEGORY: Demonstration 1. Introduction This presentation is a demonstration of TPS, a theorem proving system for classical type theory (Church's typed 3 lcalculus [14]) which has been under development at Carnegie Mellon University for a number of years. TPS is based on an approach to automated theorem proving called the mating method [2], which is essentially the same as the connection method developed independently by Bibel [13]. The mating method does not require reduction to clausal form. TPS handles two sorts of proofs, natural deduction proofs and expansion proofs. Natural deduction proofs are humanreadable formal proofs. An example of such a proof which was produced aut...