Results 1  10
of
26
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 482 (11 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a mechanical way to algorithms for SDP with proofs of convergence and polynomial time complexity also carrying over in a similar fashion. Finally we study the significance of these results in a variety of combinatorial optimization problems including the general 01 integer programs, the maximum clique and maximum stable set problems in perfect graphs, the maximum k partite subgraph problem in graphs, and va...
The geometry of algorithms with orthogonality constraints
 SIAM J. MATRIX ANAL. APPL
, 1998
"... In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal proces ..."
Abstract

Cited by 383 (1 self)
 Add to MetaCart
In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal processing. In addition to the new algorithms, we show how the geometrical framework gives penetrating new insights allowing us to create, understand, and compare algorithms. The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view of previously unrelated algorithms. It is our hope that developers of new algorithms and perturbation theories will benefit from the theory, methods, and examples in this paper.
An InteriorPoint Method for Semidefinite Programming
, 2005
"... We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other appli ..."
Abstract

Cited by 207 (17 self)
 Add to MetaCart
We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other applications include maxmin eigenvalue problems and relaxations for the stable set problem.
Complementarity and Nondegeneracy in Semidefinite Programming
, 1995
"... Primal and dual nondegeneracy conditions are defined for semidefinite programming. Given the existence of primal and dual solutions, it is shown that primal nondegeneracy implies a unique dual solution and that dual nondegeneracy implies a unique primal solution. The converses hold if strict complem ..."
Abstract

Cited by 103 (9 self)
 Add to MetaCart
Primal and dual nondegeneracy conditions are defined for semidefinite programming. Given the existence of primal and dual solutions, it is shown that primal nondegeneracy implies a unique dual solution and that dual nondegeneracy implies a unique primal solution. The converses hold if strict complementarity is assumed. Primal and dual nondegeneracy assumptions do not imply strict complementarity, as they do in LP. The primal and dual nondegeneracy assumptions imply a range of possible ranks for primal and dual solutions X and Z. This is in contrast with LP where nondegeneracy assumptions exactly determine the number of variables which are zero. It is shown that primal and dual nondegeneracy and strict complementarity all hold generically. Numerical experiments suggest probability distributions for the ranks of X and Z which are consistent with the nondegeneracy conditions.
The Mathematics Of Eigenvalue Optimization
, 2003
"... Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemp ..."
Abstract

Cited by 92 (13 self)
 Add to MetaCart
Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemporary optimization theory. This essay presents a personal choice of some central mathematical ideas, outlined for the broad optimization community. I discuss the convex analysis of spectral functions and invariant matrix norms, touching briey on semide nite representability, and then outlining two broader algebraic viewpoints based on hyperbolic polynomials and Lie algebra. Analogous nonconvex notions lead into eigenvalue perturbation theory. The last third of the article concerns stability, for polynomials, matrices, and associated dynamical systems, ending with a section on robustness. The powerful and elegant language of nonsmooth analysis appears throughout, as a unifying narrative thread.
LargeScale Optimization of Eigenvalues
 SIAM J. Optimization
, 1991
"... Optimization problems involving eigenvalues arise in many applications. Let x be a vector of real parameters and let A(x) be a continuously differentiable symmetric matrix function of x. We consider a particular problem which occurs frequently: the minimization of the maximum eigenvalue of A(x), ..."
Abstract

Cited by 83 (4 self)
 Add to MetaCart
Optimization problems involving eigenvalues arise in many applications. Let x be a vector of real parameters and let A(x) be a continuously differentiable symmetric matrix function of x. We consider a particular problem which occurs frequently: the minimization of the maximum eigenvalue of A(x), subject to linear constraints and bounds on x. The eigenvalues of A(x) are not differentiable at points x where they coalesce, so the optimization problem is said to be nonsmooth. Furthermore, it is typically the case that the optimization objective tends to make eigenvalues coalesce at a solution point. There are three main purposes of the paper. The first is to present a clear and selfcontained derivation of the Clarke generalized gradient of the max eigenvalue function in terms of a "dual matrix". The second purpose is to describe a new algorithm, based on the ideas of a previous paper by the author (SIAM J. Matrix Anal. Appl. 9 (1988) 256268), which is suitable for solving l...
First and Second Order Analysis of Nonlinear Semidefinite Programs
 Mathematical Programming
, 1997
"... In this paper we study nonlinear semidefinite programming problems. Convexity, duality and firstorder optimality conditions for such problems are presented. A secondorder analysis is also given. Secondorder necessary and sufficient optimality conditions are derived. Finally, sensitivity analysi ..."
Abstract

Cited by 47 (11 self)
 Add to MetaCart
In this paper we study nonlinear semidefinite programming problems. Convexity, duality and firstorder optimality conditions for such problems are presented. A secondorder analysis is also given. Secondorder necessary and sufficient optimality conditions are derived. Finally, sensitivity analysis of such programs is discussed. Key words: Semidefinite programming, cone constraints, convex programming, duality, secondorder optimality conditions, tangent cones, optimal value function, sensitivity analysis. AMS subject classification: 90C25, 90C30, 90C31 1 Introduction In this paper we consider the following optimization problem (P ) min x2IR m f(x) subject to G(x) 0: Here G : IR m ! S n is a mapping from IR m into the space S n of n \Theta n symmetric matrices and, for A; B 2 S n , the notation A B (the notation A B) means that the matrix A \Gamma B is positive semidefinite (negative semidefinite). Consider the cone K ae S n of positive semidefinite matrices. Then the co...
Bundle Methods to Minimize the Maximum Eigenvalue Function
, 1999
"... this paper. 1.9.1 The spectral bundle method ..."
Active Sets, Nonsmoothness And Sensitivity
, 2001
"... Nonsmoothness abounds in optimization, but the way it typically arises is highly structured. Nonsmooth behaviour of an objective function is usually associated, locally, with an active manifold: on this manifold the function is smooth, whereas in normal directions it is \veeshaped". Active set ..."
Abstract

Cited by 31 (14 self)
 Add to MetaCart
Nonsmoothness abounds in optimization, but the way it typically arises is highly structured. Nonsmooth behaviour of an objective function is usually associated, locally, with an active manifold: on this manifold the function is smooth, whereas in normal directions it is \veeshaped". Active set ideas in optimization depend heavily on this structure. Important examples of such functions include the pointwise maximum of some smooth functions, and the maximum eigenvalue of a parametrized symmetric matrix. Among possible foundations for practical nonsmooth optimization, this broad class of \partly smooth" functions seems a promising candidate, enjoying a powerful calculus and sensitivity theory. In particular, we show under a natural regularity condition that critical points of partly smooth functions are stable: small perturbations to the function cause small movements of the critical point on the active manifold. Department of Combinatorics & Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. Email: aslewis@math.uwaterloo.ca. Research supported by NSERC. 1 1
Twice Differentiable Spectral Functions
 SIAM J. Matrix Anal. Appl
, 2001
"... A function F on the space of nbyn real symmetric matrices is called spectral if it depends only on the eigenvalues of its argument. Spectral functions are just symmetric functions of the eigenvalues. We show that a spectral function is twice (continuously) dierentiable at a matrix if and only if t ..."
Abstract

Cited by 28 (5 self)
 Add to MetaCart
A function F on the space of nbyn real symmetric matrices is called spectral if it depends only on the eigenvalues of its argument. Spectral functions are just symmetric functions of the eigenvalues. We show that a spectral function is twice (continuously) dierentiable at a matrix if and only if the corresponding symmetric function is twice (continuously) dierentiable at the vector of eigenvalues. We give a concise and usable formula for the Hessian. Keywords: spectral function, twice dierentiable, eigenvalue optimization, semidenite program, symmetric function, perturbation theory. 2000 Mathematics Subject Classication: 47A55, 15A18, 90C22 1 Introduction In this paper we are interested in functions F of a symmetric matrix argument that are invariant under orthogonal similarity transformations: F (U T AU) = F (A); for all orthogonal U and symmetric A : Department of Combinatorics & Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. Email: aslewis@...