Results 1  10
of
13
Singular traces, dimensions, and NovikovShubin invariants
 Proceedings of the 17th OT Conference, Theta
, 2000
"... ..."
Noncommutative Riemann integration and NovikovShubin invariants for Open Manifolds
, 2001
"... Given a C ∗algebra A with a semicontinuous semifinite trace τ acting on the Hilbert space H, we define the family A R of bounded Riemann measurable elements w.r.t. τ as a suitable closure, à la Dedekind, of A, in analogy with one of the classical characterizations of Riemann measurable functions [2 ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
Given a C ∗algebra A with a semicontinuous semifinite trace τ acting on the Hilbert space H, we define the family A R of bounded Riemann measurable elements w.r.t. τ as a suitable closure, à la Dedekind, of A, in analogy with one of the classical characterizations of Riemann measurable functions [26], and show that A R is a C ∗algebra, and τ extends to a semicontinuous semifinite trace on A R. Then, unbounded Riemann measurable operators are defined as the closed operators on H which are affiliated to A ′′ and can be approximated in measure by operators in A R, in analogy with unbounded Riemann integration. Unbounded Riemann measurable operators form a τa.e. bimodule on A R, denoted by A R, and such bimodule contains the functional calculi of selfadjoint elements of A R under unbounded Riemann measurable functions. Besides, τ extends to a bimodule trace on A R.
An asymptotic dimension for metric spaces, and the 0th NovikovShubin invariant
"... A nonnegative number d∞, called asymptotic dimension, is associated with any metric space. Such number detects the asymptotic properties of the space (being zero on bounded metric spaces), fulfills the properties of a dimension, and is invariant under rough isometries. It is then shown that for a cl ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
A nonnegative number d∞, called asymptotic dimension, is associated with any metric space. Such number detects the asymptotic properties of the space (being zero on bounded metric spaces), fulfills the properties of a dimension, and is invariant under rough isometries. It is then shown that for a class of open manifolds with bounded geometry the asymptotic dimension coincides with the 0th NovikovShubin number α0 defined in a previous paper [D. Guido, T. Isola, J. Funct. Analysis, 176 (2000)]. Thus the dimensional interpretation of α0 given in the mentioned paper in the framework of noncommutative geometry is established on metrics grounds. Since the asymptotic dimension of a covering manifold coincides with the polynomial growth of its covering group, the stated equality generalises to open manifolds a result by Varopoulos. 0. Introduction.
Equality of Lifshitz and van Hove exponents on amenable Cayley graphs
"... Abstract. We study the low energy asymptotics of periodic and random Laplace operators on Cayley graphs of amenable, finitely generated groups. For the periodic operator the asymptotics is characterised by the van Hove exponent or zeroth NovikovShubin invariant. The random model we consider is give ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
Abstract. We study the low energy asymptotics of periodic and random Laplace operators on Cayley graphs of amenable, finitely generated groups. For the periodic operator the asymptotics is characterised by the van Hove exponent or zeroth NovikovShubin invariant. The random model we consider is given in terms of an adjacency Laplacian on site or edge percolation subgraphs of the Cayley graph. The asymptotic behaviour of the spectral distribution is exponential, characterised by the Lifshitz exponent. We show that for the adjacency Laplacian the two invariants/exponents coincide. The result holds also for more general symmetric transition operators. For combinatorial Laplacians one has a different universal behaviour of the low energy asymptotics of the spectral distribution function, which can be actually established on quasitransitive graphs without an amenability assumption. The latter result holds also for long range bond percolation models. 1.
Noncommutative Riemann integration and singular traces for C ∗  algebras
"... Given a C ∗algebra A with a semicontinuous semifinite trace τ acting on the Hilbert space H, we define the family A R of bounded Riemann measurable elements w.r.t. τ as a suitable closure, à la Dedekind, of A, in analogy with one of the classical characterizations of Riemann measurable functions [1 ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
Given a C ∗algebra A with a semicontinuous semifinite trace τ acting on the Hilbert space H, we define the family A R of bounded Riemann measurable elements w.r.t. τ as a suitable closure, à la Dedekind, of A, in analogy with one of the classical characterizations of Riemann measurable functions [16], and show that A R is a C ∗algebra, and τ extends to a semicontinuous semifinite trace on A R. Then, unbounded Riemann measurable operators are defined as the closed operators on H which are affiliated to A ′′ and can be approximated in measure by operators in A R, in analogy with improper Riemann integration. Unbounded Riemann measurable operators form a τa.e. bimodule on A R, denoted by AR, and such bimodule contains the functional calculi of selfadjoint elements of A R under unbounded Riemann measurable functions. Besides, τ extends to a bimodule trace on AR. As type II1 singular traces for a semifinite von Neumann algebra M with a normal semifinite faithful (nonatomic) trace τ have been defined as traces on M − Mbimodules of unbounded τmeasurable operators [5], type II1 singular traces for a C ∗algebra A with a semicontinuous semifinite (nonatomic) trace τ are defined here as traces on A − Abimodules of unbounded Riemann measurable operators (in AR) for any faithful representation of A. An application of singular traces for C ∗algebras is contained in [6].
A Semicontinuous Trace for Almost Local Operators on an Open Manifold
, 2001
"... A semicontinuous semifinite trace is constructed on the C*algebra ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
A semicontinuous semifinite trace is constructed on the C*algebra
Percolation Hamiltonians
, 1002
"... Abstract. There has been quite some activity and progress concerning spectral asymptotics of random operators that are defined on percolation subgraphs of different types of graphs. In this short survey we record some of these results and explain the necessary background coming from different areas ..."
Abstract
 Add to MetaCart
Abstract. There has been quite some activity and progress concerning spectral asymptotics of random operators that are defined on percolation subgraphs of different types of graphs. In this short survey we record some of these results and explain the necessary background coming from different areas in mathematics: graph theory, group theory, probability theory and random operators.
Abstract
, 2004
"... On considère la classe des variétés riemanniennes complètes non compactes dont le noyau de la chaleur satisfait une estimation supérieure et inférieure gaussienne. On montre que la transformée de Riesz y est bornée sur L p, pour un intervalle ouvert de p audessus de 2, si et seulement si le gradien ..."
Abstract
 Add to MetaCart
On considère la classe des variétés riemanniennes complètes non compactes dont le noyau de la chaleur satisfait une estimation supérieure et inférieure gaussienne. On montre que la transformée de Riesz y est bornée sur L p, pour un intervalle ouvert de p audessus de 2, si et seulement si le gradient du noyau de la chaleur satisfait une certaine estimation L p pour le même intervalle d’exposants p. One considers the class of complete noncompact Riemannian manifolds whose heat kernel satisfies Gaussian estimates from above and below. One shows that the Riesz transform is L p bounded on such a manifold, for p ranging in an open interval above 2, if and only if the gradient of the heat kernel satisfies a certain L p estimate in the same