Results 1  10
of
484
Distributed Clustering in Adhoc Sensor Networks: A Hybrid, EnergyEfficient Approach
, 2004
"... Prolonged network lifetime, scalability, and load balancing are important requirements for many adhoc sensor network applications. Clustering sensor nodes is an effective technique for achieving these goals. In this work, we propose a new energyefficient approach for clustering nodes in adhoc sens ..."
Abstract

Cited by 275 (11 self)
 Add to MetaCart
(Show Context)
Prolonged network lifetime, scalability, and load balancing are important requirements for many adhoc sensor network applications. Clustering sensor nodes is an effective technique for achieving these goals. In this work, we propose a new energyefficient approach for clustering nodes in adhoc sensor networks. Based on this approach, we present a protocol, HEED (Hybrid EnergyEfficient Distributed clustering), that periodically selects cluster heads according to a hybrid of their residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED does not make any assumptions about the distribution or density of nodes, or about node capabilities, e.g., locationawareness. The clustering process terminates in O(1) iterations, and does not depend on the network topology or size. The protocol incurs low overhead in terms of processing cycles and messages exchanged. It also achieves fairly uniform cluster head distribution across the network. A careful selection of the secondary clustering parameter can balance load among cluster heads. Our simulation results demonstrate that HEED outperforms weightbased clustering protocols in terms of several cluster characteristics. We also apply our approach to a simple application to demonstrate its effectiveness in prolonging the network lifetime and supporting data aggregation.
Inferring Parameters and Structure of Latent Variable Models by Variational Bayes
, 1999
"... Current methods for learning graphical models with latent variables and a fixed structure estimate optimal values for the model parameters. Whereas this approach usually produces overfitting and suboptimal generalization performance, carrying out the Bayesian program of computing the full posterior ..."
Abstract

Cited by 163 (1 self)
 Add to MetaCart
(Show Context)
Current methods for learning graphical models with latent variables and a fixed structure estimate optimal values for the model parameters. Whereas this approach usually produces overfitting and suboptimal generalization performance, carrying out the Bayesian program of computing the full posterior distributions over the parameters remains a difficult problem. Moreover, learning the structure of models with latent variables, for which the Bayesian approach is crucial, is yet a harder problem. In this paper I present the Variational Bayes framework, which provides a solution to these problems. This approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner without resorting to sampling methods. Unlike in the Laplace approximation, these posteriors are generally nonGaussian and no Hessian needs to be computed. The resulting algorithm generalizes the standard Expectation Maximization a...
Identification of humans using gait
 IEEE Transactions on Image Processing
, 2004
"... Abstract—We propose a viewbased approach to recognize humans from their gait. Two different image features have been considered: the width of the outer contour of the binarized silhouette of the walking person and the entire binary silhouette itself. To obtain the observation vector from the image ..."
Abstract

Cited by 122 (10 self)
 Add to MetaCart
Abstract—We propose a viewbased approach to recognize humans from their gait. Two different image features have been considered: the width of the outer contour of the binarized silhouette of the walking person and the entire binary silhouette itself. To obtain the observation vector from the image features, we employ two different methods. In the first method, referred to as the indirect approach, the highdimensional image feature is transformed to a lower dimensional space by generating what we call the frame to exemplar (FED) distance. The FED vector captures both structural and dynamic traits of each individual. For compact and effective gait representation and recognition, the gait information in the FED vector sequences is captured in a hidden Markov model (HMM). In the second method, referred to as the direct approach, we work with the feature vector directly (as opposed to computing the FED) and train an HMM. We estimate the HMM parameters (specifically the observation probability) based on the distance between the exemplars and the image features. In this way, we avoid learning highdimensional probability density functions. The statistical nature of the HMM lends overall robustness to representation and recognition. The performance of the methods is illustrated using several databases. I.
The composite absolute penalties family for grouped and hierarchical variable selection
 Ann. Statist
"... Extracting useful information from highdimensional data is an important focus of today’s statistical research and practice. Penalized loss function minimization has been shown to be effective for this task both theoretically and empirically. With the virtues of both regularization and sparsity, the ..."
Abstract

Cited by 103 (3 self)
 Add to MetaCart
(Show Context)
Extracting useful information from highdimensional data is an important focus of today’s statistical research and practice. Penalized loss function minimization has been shown to be effective for this task both theoretically and empirically. With the virtues of both regularization and sparsity, the L1penalized squared error minimization method Lasso has been popular in regression models and beyond. In this paper, we combine different norms including L1 to form an intelligent penalty in order to add side information to the fitting of a regression or classification model to obtain reasonable estimates. Specifically, we introduce the Composite Absolute Penalties (CAP) family, which allows given grouping and hierarchical relationships between the predictors to be expressed. CAP penalties are built by defining groups and combining the properties of norm penalties at the acrossgroup and withingroup levels. Grouped selection occurs for nonoverlapping groups. Hierarchical variable selection is reached
Grouped and hierarchical model selection through composite absolute penalties
 Annals of Statistics
, 2006
"... Extracting useful information from highdimensional data is an important part of the focus of today’s statistical research and practice. Penalized loss function minimization has been shown to be effective for this task both theoretically and empirically. With the virtues of both regularization and ..."
Abstract

Cited by 99 (3 self)
 Add to MetaCart
(Show Context)
Extracting useful information from highdimensional data is an important part of the focus of today’s statistical research and practice. Penalized loss function minimization has been shown to be effective for this task both theoretically and empirically. With the virtues of both regularization and sparsity, the L1penalized L2 minimization method Lasso has been popular in regression models. In this paper, we combine different norms including L1 to form an intelligent penalty in order to add side information to the fitting of a regression or classification model to obtain reasonable estimates. Specifically, we introduce the Composite Absolute Penalties (CAP) family which allows the grouping and hierarchical relationships between the predictors to be expressed. CAP penalties are built by defining groups and combining the properties of norm penalties at the across group and within group levels. Grouped selection occurs for nonoverlapping groups. In that case, we give a Bayesian 1 interpretation for CAP penalties. Hierarchical variable selection is reached by defining groups with particular overlapping patterns. In the computation aspect, we propose using the BLASSO and crossvalidation to obtain CAP estimates. For a subfamily of CAP estimates involving only the L1 and L ∞ norms, we introduce the iCAP algorithm to trace the entire regularization path for the grouped selection problem. Within this subfamily, unbiased estimates of the degrees of freedom (df) are derived allowing the regularization parameter to be selected without crossvalidation. CAP is shown to improve on the predictive performance of the LASSO in a series of simulated experiments including cases with p>> n and misspecified groupings. When the complexity of a model is properly calculated, iCAP is seen to be parsimonious in the experiments. 1
Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data
, 2004
"... This chapter gives an overview of recent advances in latent variable analysis. Emphasis is placed on the strength of modeling obtained by using a flexible combination of continuous and categorical latent variables. ..."
Abstract

Cited by 96 (16 self)
 Add to MetaCart
(Show Context)
This chapter gives an overview of recent advances in latent variable analysis. Emphasis is placed on the strength of modeling obtained by using a flexible combination of continuous and categorical latent variables.
The Finite Moment Log Stable Process and Option Pricing
, 2002
"... We document a surprising pattern in market prices of S&P 500 index options. When implied volatilities are graphed against a standard measure of moneyness, the implied volatility smirk does not flatten out as maturity increases up to the observable horizon of two years. This behavior contrasts sh ..."
Abstract

Cited by 90 (12 self)
 Add to MetaCart
We document a surprising pattern in market prices of S&P 500 index options. When implied volatilities are graphed against a standard measure of moneyness, the implied volatility smirk does not flatten out as maturity increases up to the observable horizon of two years. This behavior contrasts sharply with the implications of many pricing models and with the asymptotic behavior implied by the central limit theorem (CLT). We develop a parsimonious model which deliberately violates the CLT assumptions and thus captures the observed behavior of the volatility smirk over the maturity horizon. Calibration exercises demonstrate its superior performance against several widely used alternatives.
Much ado about two: reconsidering retransformation and the twopart model in health econometrics
 Journal of Health Economics
, 1998
"... in health econometrics ..."
(Show Context)
Constructive Algorithms for Structure Learning in Feedforward Neural Networks for Regression Problems
 IEEE Transactions on Neural Networks
, 1997
"... In this survey paper, we review the constructive algorithms for structure learning in feedforward neural networks for regression problems. The basic idea is to start with a small network, then add hidden units and weights incrementally until a satisfactory solution is found. By formulating the whole ..."
Abstract

Cited by 83 (2 self)
 Add to MetaCart
(Show Context)
In this survey paper, we review the constructive algorithms for structure learning in feedforward neural networks for regression problems. The basic idea is to start with a small network, then add hidden units and weights incrementally until a satisfactory solution is found. By formulating the whole problem as a state space search, we first describe the general issues in constructive algorithms, with special emphasis on the search strategy. A taxonomy, based on the differences in the state transition mapping, the training algorithm and the network architecture, is then presented. Keywords Constructive algorithm, structure learning, state space search, dynamic node creation, projection pursuit regression, cascadecorrelation, resourceallocating network, group method of data handling. I. Introduction A. Problems with Fixed Size Networks I N recent years, many neural network models have been proposed for pattern classification, function approximation and regression problems. Among...
Statistical relational learning for link prediction
 In Proceedings of the Workshop on Learning Statistical Models from Relational Data at IJCAI2003
, 2003
"... Link prediction is a complex, inherently relational, task. Be it in the domain of scientific citations, social networks or hypertext links, the underlying data are extremely noisy and the characteristics useful for prediction are not readily available in a “flat ” file format, but rather involve com ..."
Abstract

Cited by 78 (6 self)
 Add to MetaCart
Link prediction is a complex, inherently relational, task. Be it in the domain of scientific citations, social networks or hypertext links, the underlying data are extremely noisy and the characteristics useful for prediction are not readily available in a “flat ” file format, but rather involve complex relationships among objects. In this paper, we propose the application of our methodology for Statistical Relational Learning to building link prediction models. We propose an integrated approach to building regression models from data stored in relational databases in which potential predictors are generated by structured search of the space of queries to the database, and then tested for inclusion in a logistic regression. We present experimental results for the task of predicting citations made in scientific literature using relational data taken from CiteSeer. This data includes the citation graph, authorship and publication venues of papers, as well as their word content. 1