Results 1  10
of
39
Primaldual approximation algorithms for metric facility location and kmedian problems
 Journal of the ACM
, 1999
"... ..."
Approximation Algorithms for Projective Clustering
 Proceedings of the ACM SIGMOD International Conference on Management of data, Philadelphia
, 2000
"... We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w ..."
Abstract

Cited by 246 (21 self)
 Add to MetaCart
We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w be the smallest value so that S can be covered by k hyperstrips (resp. hypercylinders), each of width (resp. diameter) at most w : In the plane, the two problems are equivalent. It is NPHard to compute k planar strips of width even at most Cw ; for any constant C ? 0 [50]. This paper contains four main results related to projective clustering: (i) For d = 2, we present a randomized algorithm that computes O(k log k) strips of width at most 6w that cover S. Its expected running time is O(nk 2 log 4 n) if k 2 log k n; it also works for larger values of k, but then the expected running time is O(n 2=3 k 8=3 log 4 n). We also propose another algorithm that computes a c...
Scheduling to Minimize Average Completion Time: Offline and Online Algorithms
, 1996
"... Timeindexed linear programming formulations have recently received a great deal of attention for their practical effectiveness in solving a number of singlemachine scheduling problems. We show that these formulations are also an important tool in the design of approximation algorithms with good wo ..."
Abstract

Cited by 197 (27 self)
 Add to MetaCart
Timeindexed linear programming formulations have recently received a great deal of attention for their practical effectiveness in solving a number of singlemachine scheduling problems. We show that these formulations are also an important tool in the design of approximation algorithms with good worstcase performance guarantees. We give simple new rounding techniques to convert an optimal fractional solution into a feasible schedule for which we can prove a constantfactor performance guarantee, thereby giving the first theoretical evidence of the strength of these relaxations. Specifically, we consider the problem of minimizing the total weighted job completion time on a single machine subject to precedence constraints, and give a polynomialtime (4 + ffl)approximation algorithm, for any ffl ? 0; the best previously known guarantee for this problem was superlogarithmic. With somewhat larger constants, we also show how to extend this result to the case with release date constraints, ...
Improved approximation algorithms for uncapacitated facility location (Extended Abstract)
, 1998
"... ..."
Approximation schemes for Euclidean kMedians And Related Problems
 In Proc. 30th Annu. ACM Sympos. Theory Comput
, 1998
"... In the kmedian problem we are given a set S of n points in a metric space and a positive integer k. We desire to locate k medians in space, such that the sum of the distances from each of the points of S to the nearest median is minimized. This paper gives an approximation scheme for the plane that ..."
Abstract

Cited by 121 (4 self)
 Add to MetaCart
In the kmedian problem we are given a set S of n points in a metric space and a positive integer k. We desire to locate k medians in space, such that the sum of the distances from each of the points of S to the nearest median is minimized. This paper gives an approximation scheme for the plane that for any c > 0 produces a solution of cost at most 1 + 1/c times the optimum and runs in time O(n O(c+1) ). The approximation scheme also generalizes to some problems related to kmedian. Our methodology is to extend Arora's [1, 2] techniques for the TSP, which hitherto seemed inapplicable to problems such as the kmedian problem. 1 Introduction In the kmedian problem we are given a set S of n points in a metric space and a positive integer k. We desire to locate k medians in the space, such that the sum of the distances from each of the points of S to the nearest median is minimized. Besides its intrinsic appeal as a cleanlystated, basic unsolved problem in combinatorial optimizatio...
A PTAS for the Multiple Knapsack Problem
, 1993
"... The Multiple Knapsackproblem (MKP) is a natural and well known generalization of the single knapsack problem and is defined as follows. We are given a set of n items and m bins (knapsacks) such that each item i has a profit p(i) and a size s(i), and each bin j has a capacity c(j). The goal is to fin ..."
Abstract

Cited by 97 (2 self)
 Add to MetaCart
The Multiple Knapsackproblem (MKP) is a natural and well known generalization of the single knapsack problem and is defined as follows. We are given a set of n items and m bins (knapsacks) such that each item i has a profit p(i) and a size s(i), and each bin j has a capacity c(j). The goal is to find a subset of items of maximum profit such that they have a feasible packing in the bins. MKP is a special case of the Generalized Assignment problem (GAP) where the profit and the size of an item can vary based on the specific bin that it is assigned to. GAP is APXhard and a 2approximation for it is implicit in the work of Shmoys and Tardos [26], and thus far, this was also the best known approximation for MKP. The main result of this paper is a polynomial time approximation scheme for MKP. Apart from its inherent theoretical interest as a common generalization of the wellstudied knapsack and bin packing problems, it appears to be the strongest special case of GAP that is not APXhard. We substantiate this by showing that slight generalizations of MKP that are very restricted versions of GAP are APXhard. Thus our results help demarcate the boundary at which instances of GAP becomeAPXhard. An interesting and novel aspect of our approach is an approximation preserving reduction from an arbitrary instance of MKP to an instance with O(log n) distinct sizes and profits.
Improved Approximation Algorithms for Shop Scheduling Problems
, 1994
"... In the job shop scheduling problem we are given m machines and n jobs; a job consists of a sequence of operations, each of which must be processed on a specified machine; the objective is to complete all jobs as quickly as possible. This problem is strongly NPhard even for very restrictive special ..."
Abstract

Cited by 84 (7 self)
 Add to MetaCart
In the job shop scheduling problem we are given m machines and n jobs; a job consists of a sequence of operations, each of which must be processed on a specified machine; the objective is to complete all jobs as quickly as possible. This problem is strongly NPhard even for very restrictive special cases. We give the first randomized and deterministic polynomialtime algorithms that yield polylogarithmic approximations to the optimal length schedule. Our algorithms also extend to the more general case where a job is given not by a linear ordering of the machines on which it must be processed but by an arbitrary partial order. Comparable bounds can also be obtained when there are m 0 types of machines, a specified number of machines of each type, and each operation must be processed on one of the machines of a specified type, as well as for the problem of scheduling unrelated parallel machines subject to chain precedence constraints. Key Words: scheduling, approximation algorithms AM...
Sublinear Time Algorithms for Metric Space Problems
"... In this paper we give approximation algorithms for the following problems on metric spaces: Furthest Pair, k median, Minimum Routing Cost Spanning Tree, Multiple Sequence Alignment, Maximum Traveling Salesman Problem, Maximum Spanning Tree and Average Distance. The key property of our algorithms i ..."
Abstract

Cited by 80 (2 self)
 Add to MetaCart
In this paper we give approximation algorithms for the following problems on metric spaces: Furthest Pair, k median, Minimum Routing Cost Spanning Tree, Multiple Sequence Alignment, Maximum Traveling Salesman Problem, Maximum Spanning Tree and Average Distance. The key property of our algorithms is that their running time is linear in the number of metric space points. As the full specification o`f an npoint metric space is of size \Theta(n 2 ), the complexity of our algorithms is sublinear with respect to the input size. All previous algorithms (exact or approximate) for the problems we consider have running time\Omega\Gamma n 2 ). We believe that our techniques can be applied to get similar bounds for other problems. 1 Introduction In recent years there has been a dramatic growth of interest in algorithms operating on massive data sets. This poses new challenges for algorithm design, as algorithms quite efficient on small inputs (for example, having quadratic running time) ...
Improved Approximation Algorithms for Capacitated Facility Location Problems
"... In a surprising result, Korupolu, Plaxton, and Rajaraman [13] showed that a simple local search heuristic for the capacitated facility location problem (CFLP) in which the service costs obey the triangle inequality produces a solution in polynomial time which is within a factor of 8+ # of the val ..."
Abstract

Cited by 79 (1 self)
 Add to MetaCart
In a surprising result, Korupolu, Plaxton, and Rajaraman [13] showed that a simple local search heuristic for the capacitated facility location problem (CFLP) in which the service costs obey the triangle inequality produces a solution in polynomial time which is within a factor of 8+ # of the value of an optimal solution. By simplifying their analysis, we are able to show that the same heuristic produces a solution which is within a factor of 6(1 + #) of the value of an optimal solution. Our simplified analysis uses the supermodularity of the cost function of the problem and the integrality of the transshipment polyhedron. Additionally