Results 1  10
of
23
Model categories of diagram spectra
 Proc. London Math. Soc
"... 1. Preliminaries about topological model categories 5 2. Preliminaries about equivalences of model categories 9 3. The level model structure on Dspaces 10 4. Preliminaries about π∗isomorphisms of prespectra 14 ..."
Abstract

Cited by 111 (35 self)
 Add to MetaCart
1. Preliminaries about topological model categories 5 2. Preliminaries about equivalences of model categories 9 3. The level model structure on Dspaces 10 4. Preliminaries about π∗isomorphisms of prespectra 14
Stable model categories are categories of modules
 TOPOLOGY
, 2003
"... A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for ..."
Abstract

Cited by 78 (16 self)
 Add to MetaCart
A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for deciding when two stable model categories represent ‘the same homotopy theory’. We show that stable model categories with a single compact generator are equivalent to modules over a ring spectrum. More generally stable model categories with a set of generators are characterized as modules over a ‘ring spectrum with several objects’, i.e., as spectrum valued diagram categories. We also prove a Morita theorem which shows how equivalences between module categories over ring spectra can be realized by smashing with a pair of bimodules. Finally, we characterize stable model categories which represent the derived category of a ring. This is a slight generalization of Rickard’s work on derived equivalent rings. We also include a proof of the model category equivalence of modules over the EilenbergMac Lane spectrum HR and (unbounded) chain complexes of Rmodules for a ring R.
Combinatorial model categories have presentations
 Adv. in Math. 164
, 2001
"... Abstract. We show that every combinatorial model category is Quillen equivalent to a localization of a diagram category (where ‘diagram category’ means diagrams of simplicial sets). This says that every combinatorial model ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
Abstract. We show that every combinatorial model category is Quillen equivalent to a localization of a diagram category (where ‘diagram category’ means diagrams of simplicial sets). This says that every combinatorial model
Universal homotopy theories
 Adv. Math
"... Abstract. Begin with a small category C. The goal of this short note is to point out that there is such a thing as a ‘universal model category built from C’. We describe applications of this to the study of homotopy colimits, the DwyerKan theory of framings, to sheaf theory, and to the homotopy the ..."
Abstract

Cited by 38 (3 self)
 Add to MetaCart
Abstract. Begin with a small category C. The goal of this short note is to point out that there is such a thing as a ‘universal model category built from C’. We describe applications of this to the study of homotopy colimits, the DwyerKan theory of framings, to sheaf theory, and to the homotopy theory of schemes. Contents
Local projective model structures on simplicial presheaves
 Ktheory
"... Abstract. We give a model structure on the category of simplicial presheaves on some essentially small Grothendieck site T. When T is the Nisnevich site it specializes to a proper simplicial model category with the same weak equivalences as in [MV], but with fewer cofibrations and consequently more ..."
Abstract

Cited by 35 (0 self)
 Add to MetaCart
Abstract. We give a model structure on the category of simplicial presheaves on some essentially small Grothendieck site T. When T is the Nisnevich site it specializes to a proper simplicial model category with the same weak equivalences as in [MV], but with fewer cofibrations and consequently more fibrations. This allows a simpler proof of the comparison theorem of [V2], one which makes no use of ∆closed classes. The purpose of this note is to introduce different model structures on the categories of simplicial presheaves and simplicial sheaves on some essentially small Grothendieck site T and to give some applications of these simplified model categories. In particular, we prove that the stable homotopy categories SH((Sm/k)Nis, A 1) and SH((Sch/k)cdh, A 1) are equivalent. This result was first proven by Voevodsky in [V2] and our proof uses many of his techniques, but it does not use his theory of ∆closed classes developed in [V3]. 1. The local projective model structure on presheaves We first recall some of the other wellknown model structures on simplicial presheaves. Definition 1.1. A map f: X → Y of simplicial presheaves (or sheaves) is a local weak equivalence if f ∗ : π0(X) → π0(Y) induces an isomorphism of associated sheaves and, for all U ∈ T, f ∗ : πn(X, x) → πn(Y, f(x)) induces an isomorphism of associated sheaves on T/U for any choice of basepoint x ∈ X(U). The map f is a sectionwise weak equivalence (respectively sectionwise fibration) if for all U ∈ T, the map f(U) : X(U) → Y (U) is a weak equivalence (respectively Kan fibration) of simplicial sets. Heller [He] discovered a model structure on simplicial presheaves whose weak equivalences are the sectionwise weak equivalences. We will refer to his model structure as the injective model structure. Date: January 11, 2001. I would like to thank Dan Isaksen for his many helpful suggestions, and I thank my adviser Peter May for his encouragement and careful reading of many drafts. I am also grateful to Vladimir Voevodsky for noticing an error in an earlier version and for his work that inspired this note. 1 2 BENJAMIN BLANDER
Homotopical Algebraic Geometry I: Topos theory
, 2002
"... This is the first of a series of papers devoted to lay the foundations of Algebraic Geometry in homotopical and higher categorical contexts. In this first part we investigate a notion of higher topos. For this, we use Scategories (i.e. simplicially enriched categories) as models for certain kind of ..."
Abstract

Cited by 32 (20 self)
 Add to MetaCart
This is the first of a series of papers devoted to lay the foundations of Algebraic Geometry in homotopical and higher categorical contexts. In this first part we investigate a notion of higher topos. For this, we use Scategories (i.e. simplicially enriched categories) as models for certain kind of ∞categories, and we develop the notions of Stopologies, Ssites and stacks over them. We prove in particular, that for an Scategory T endowed with an Stopology, there exists a model
HZalgebra spectra are differential graded algebras
 Amer. Jour. Math
, 2004
"... Abstract: We show that the homotopy theory of differential graded algebras coincides with the homotopy theory of HZalgebra spectra. Namely, we construct Quillen equivalences between the Quillen model categories of (unbounded) differential graded algebras and HZalgebra spectra. We also construct Qu ..."
Abstract

Cited by 32 (10 self)
 Add to MetaCart
Abstract: We show that the homotopy theory of differential graded algebras coincides with the homotopy theory of HZalgebra spectra. Namely, we construct Quillen equivalences between the Quillen model categories of (unbounded) differential graded algebras and HZalgebra spectra. We also construct Quillen equivalences between the differential graded modules and module spectra over these algebras. We use these equivalences in turn to produce algebraic models for rational stable model categories. We show that bascially any rational stable model category is Quillen equivalent to modules over a differential graded Qalgebra (with many objects). 1.
algebras and modules in general model categories, preprint arXiv:math.AT/0101102
, 2001
"... Abstract. In this paper we develop the theory of operads, algebras and modules in cofibrantly generated symmetric monoidal model categories. We give Jsemi model structures, which are a slightly weaker version of model structures, for operads and algebras and model structures for modules. We prove h ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
Abstract. In this paper we develop the theory of operads, algebras and modules in cofibrantly generated symmetric monoidal model categories. We give Jsemi model structures, which are a slightly weaker version of model structures, for operads and algebras and model structures for modules. We prove homotopy invariance properties for the categories of algebras and modules. In a second part we develop the theory of Smodules and algebras of [EKMM] and [KM], which allows a general homotopy theory for commutative algebras and pseudo unital symmetric monoidal categories of modules over them. Finally we prove a base change and projection formula.
A model structure on the category of prosimplicial sets
 Trans. Amer. Math. Soc
"... Abstract. We study the category proSS of prosimplicial sets, which arises in étale homotopy theory, shape theory, and profinite completion. We establish a model structure on proSS so that it is possible to do homotopy theory in this category. This model structure is closely related to the strict ..."
Abstract

Cited by 20 (5 self)
 Add to MetaCart
Abstract. We study the category proSS of prosimplicial sets, which arises in étale homotopy theory, shape theory, and profinite completion. We establish a model structure on proSS so that it is possible to do homotopy theory in this category. This model structure is closely related to the strict structure of Edwards and Hastings. In order to understand the notion of homotopy groups for prospaces we use local systems on prospaces. We also give several alternative descriptions of weak equivalences, including a cohomological characterization. We outline dual constructions for indspaces.