Results 1  10
of
46
Approximate distance oracles
 J. ACM
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 207 (8 self)
 Add to MetaCart
Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name “oracle”. Previously, data structures that used only O(n 1+1/k) space had a query time of Ω(n 1/k). Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs. 1
Compact routing schemes
 in SPAA ’01: Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures
"... We describe several compact routing schemes for general weighted undirected networks. Our schemes are simple and easy to implement. The routing tables stored at the nodes of the network are all very small. The headers attached to the routed messages, including the name of the destination, are extrem ..."
Abstract

Cited by 196 (7 self)
 Add to MetaCart
We describe several compact routing schemes for general weighted undirected networks. Our schemes are simple and easy to implement. The routing tables stored at the nodes of the network are all very small. The headers attached to the routed messages, including the name of the destination, are extremely short. The routing decision at each node takes constant time. Yet, the stretch of these routing schemes, i.e., the worst ratio between the cost of the path on which a packet is routed and the cost of the cheapest path from source to destination, is a small constant. Our schemes achieve a nearoptimal tradeoff between the size of the routing tables used and the resulting stretch. More specifically, we obtain: 1. A routing scheme that uses only ~ O(n 1=2) bits of memory at each node of an nnode network that has stretch 3. The space is optimal, up to logarithmic factors, in the sense that
All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix Multiplication
 Journal of the ACM
, 2000
"... We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves... ..."
Abstract

Cited by 60 (6 self)
 Add to MetaCart
We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves...
Combinatorial properties and constructions of traceability schemes and frameproof codes
 SIAM Journal on Discrete Mathematics
, 1998
"... In this paper, weinvestigate combinatorial properties and constructions of two recent topics of cryptographic interest, namely frameproof codes for digital ngerprinting, and traceability schemes for broadcast encryption. We rstgive combinatorial descriptions of these two objects in terms of set syst ..."
Abstract

Cited by 60 (6 self)
 Add to MetaCart
In this paper, weinvestigate combinatorial properties and constructions of two recent topics of cryptographic interest, namely frameproof codes for digital ngerprinting, and traceability schemes for broadcast encryption. We rstgive combinatorial descriptions of these two objects in terms of set systems, and also discuss the Hamming distance of frameproof codes when viewed as errorcorrecting codes. From these descriptions, it is seen that existence of a ctraceability scheme implies the existence of a cframeproof code. We then give several constructions of frameproof codes and traceability schemes by using combinatorial structures such as tdesigns, packing designs, errorcorrecting codes and perfect hash families. We also investigate embeddings of frameproof codes and traceability schemes, which allow agiven scheme to be expanded at a later date to accommodate more users. Finally, we look brie y at bounds which establish necessary conditions for existence of these structures. 1
Exact and Approximate Distances in Graphs  a survey
 In ESA
, 2001
"... We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems. ..."
Abstract

Cited by 55 (0 self)
 Add to MetaCart
We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.
On Some Methods for Unconditionally Secure Key Distribution and Broadcast Encryption
 Designs, Codes and Cryptography
, 1996
"... This paper provides an exposition of methods by which a trusted authority can distribute keys and/or broadcast a message over a network, so that each member of a privileged subset of users can compute a specified key or decrypt the broadcast message. Moreover, this is done in such a way that no coal ..."
Abstract

Cited by 50 (8 self)
 Add to MetaCart
This paper provides an exposition of methods by which a trusted authority can distribute keys and/or broadcast a message over a network, so that each member of a privileged subset of users can compute a specified key or decrypt the broadcast message. Moreover, this is done in such a way that no coalition is able to recover any information on a key or broadcast message they are not supposed to know. The problems are studied using the tools of information theory, so the security provided is unconditional (i.e., not based on any computational assumption). We begin by surveying some useful schemes schemes for key distribution that have been presented in the literature, giving background and examples (but not too many proofs). In particular, we look more closely at the attractive concept of key distribution patterns, and present a new method for making these schemes more efficient through the use of resilient functions. Then we present a general approach to the construction of broadcast sch...
Robust InformationTheoretic Private Information Retrieval
 Proc. of the 28th International Colloquium on Automata, Languages and Programming, volume 2076 of Lecture Notes in Computer Science
, 2002
"... A Private Information Retrieval (PIR) protocol allows a user to retrieve a data item of its choice from a database, such that the servers storing the database do not gain information on the identity of the item being retrieved. PIR protocols were studied in depth since the subject was introduced in ..."
Abstract

Cited by 42 (5 self)
 Add to MetaCart
A Private Information Retrieval (PIR) protocol allows a user to retrieve a data item of its choice from a database, such that the servers storing the database do not gain information on the identity of the item being retrieved. PIR protocols were studied in depth since the subject was introduced in Chor, Goldreich, Kushilevitz, and Sudan 1995. The standard definition of PIR protocols raises a simple question  what happens if some of the servers crash during the operation? How can we devise a protocol which still works in the presence of crashing servers? Current systems do not guarantee availability of servers at all times for many reasons, e.g., crash of server or communication problems. Our purpose is to design robust PIR protocols, i.e., protocols which still work correctly even if only k out of # servers are available during the protocols' operation (the user does not know in advance which servers are available). We present various robust PIR protocols giving different tradeoffs between the different parameters. These protocols are incomparable, i.e., for different values of n and k we will get better results using different protocols. We first present a generic transformation from regular PIR protocols to robust PIR protocols, this transformation is important since any improvement in the communication complexity of regular PIR protocol will immediately implicate improvement in the robust PIR protocol communication. We also present two specific robust PIR protocols. Finally, we present robust PIR protocols which can tolerate Byzantine servers, i.e., robust PIR protocols which still work in the presence of malicious servers or servers with corrupted or obsolete databases. 1
All Pairs Shortest Paths in weighted directed graphs  exact and almost exact algorithms
, 1998
"... We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves the APSP problem for weighted directed graphs in which the edge weights are integers of small abso ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves the APSP problem for weighted directed graphs in which the edge weights are integers of small absolute value in ~ O(n 2+ ) time, where satisfies the equation !(1; ; 1) = 1 + 2 and !(1; ; 1) is the exponent of the multiplication of an n \Theta n matrix by an n \Theta n matrix. The currently best available bounds on !(1; ; 1), obtained by Coppersmith and Winograd, and by Huang and Pan, imply that ! 0:575. The running time of our algorithm is therefore O(n 2:575 ). Our algorithm improves on the ~ O(n (3+!)=2 ) time algorithm, where ! = !(1; 1; 1) ! 2:376 is the usual exponent of matrix multiplication, obtained by Alon, Galil and Margalit, whose running time is only known to be O(n 2:688 ). The second
AllPairs SmallStretch Paths
 Journal of Algorithms
, 1997
"... Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy to see that f ..."
Abstract

Cited by 35 (8 self)
 Add to MetaCart
Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy to see that finding paths of stretch less than 2 between all pairs of vertices in an undirected graph with n vertices is at least as hard as the Boolean multiplication of two n \Theta n matrices. We describe three algorithms for finding smallstretch paths between all pairs of vertices in a weighted graph with n vertices and m edges. The first algorithm, STRETCH 2 , runs in ~ O(n 3=2 m 1=2 ) time and finds stretch 2 paths. The second algorithm, STRETCH 7=3 , runs in ~ O(n 7=3 ) time and finds stretch 7/3 paths. Finally, the third algorithm, STRETCH 3 , runs in ~ O(n 2 ) and finds stretch 3 paths. Our algorithms are simpler, more efficient and more accurate than the previously best algorithms ...
Splitters and nearoptimal derandomization
"... We present a fairly general method for finding deterministic constructions obeying what we call krestrictions; this yields structures of size not much larger than the probabilistic bound. The structures constructed by our method include (n; k)universal sets (a collection of binary vectors of lengt ..."
Abstract

Cited by 35 (1 self)
 Add to MetaCart
We present a fairly general method for finding deterministic constructions obeying what we call krestrictions; this yields structures of size not much larger than the probabilistic bound. The structures constructed by our method include (n; k)universal sets (a collection of binary vectors of length n such that for any subset of size k of the indices, all 2k configurations appear) and families of perfect hash functions. The nearoptimal constructions of these objects imply the very efficient derandomization of algorithms in learning, of fixedsubgraph finding algorithms, and of near optimal threshold formulae. In addition, they derandomize the reduction showing the hardness of approximation of set cover. They also yield deterministic constructions for a localcoloring protocol, and for exhaustive testing of circuits.