Results 1 
4 of
4
A powerdomain construction
 SIAM J. of Computing
, 1976
"... Abstract. We develop a powerdomain construction, [.], which is analogous to the powerset construction and also fits in with the usual sum, product and exponentiation constructions on domains. The desire for such a construction arises when considering programming languages with nondeterministic featu ..."
Abstract

Cited by 210 (20 self)
 Add to MetaCart
Abstract. We develop a powerdomain construction, [.], which is analogous to the powerset construction and also fits in with the usual sum, product and exponentiation constructions on domains. The desire for such a construction arises when considering programming languages with nondeterministic features or parallel features treated in a nondeterministic way. We hope to achieve a natural, fully abstract semantics in which such equivalences as (pparq)=(qparp) hold. The domain (D Truthvalues) is not the right one, and instead we take the (finitely) generable subsets of D. When D is discrete they are ordered in an elementwise fashion. In the general case they are given the coarsest ordering consistent, in an appropriate sense, with the ordering given in the discrete case. We then find a restricted class of algebraic inductive partial orders which is closed under [. as well as the sum, product and exponentiation constructions. This class permits the solution of recursive domain equations, and we give some illustrative semantics using 5[.]. It remains to be seen if our powerdomain construction does give rise to fully abstract semantics, although such natural equivalences as the above do hold. The major deficiency is the lack of a convincing treatment of the fair parallel construct. 1. Introduction. When one follows the ScottStrachey approach to the
Algebraic Approaches to Nondeterminism  an Overview
 ACM Computing Surveys
, 1997
"... this paper was published as Walicki, M.A. and Meldal, S., 1995, Nondeterministic Operators in Algebraic Frameworks, Tehnical Report No. CSLTR95664, Stanford University ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
this paper was published as Walicki, M.A. and Meldal, S., 1995, Nondeterministic Operators in Algebraic Frameworks, Tehnical Report No. CSLTR95664, Stanford University
A Programming Language for the Inductive Sets, and Applications
, 1984
"... Structures," NorthHolland, Amsterdam, 1974), r.e. dynamic logic is more expressive than finitetest dynamic logic. This refines a separation result of Meyer and Parikh ("Proc. 12th ACM Sympos. on Theory of Computing," 1979, pp. ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Structures," NorthHolland, Amsterdam, 1974), r.e. dynamic logic is more expressive than finitetest dynamic logic. This refines a separation result of Meyer and Parikh ("Proc. 12th ACM Sympos. on Theory of Computing," 1979, pp.
The temporal knapsack problem and its solution
 In Proceedings of the 2 d International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
, 2005
"... Abstract. This paper introduces a problem called the temporal knapsack problem, presents several algorithms for solving it, and compares their performance. The temporal knapsack problem is a generalisation of the knapsack problem and specialisation of the multidimensional (or multiconstraint) knapsa ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. This paper introduces a problem called the temporal knapsack problem, presents several algorithms for solving it, and compares their performance. The temporal knapsack problem is a generalisation of the knapsack problem and specialisation of the multidimensional (or multiconstraint) knapsack problem. It arises naturally in applications such as allocating communication bandwidth or CPUs in a multiprocessor to bids for the resources. The algorithms considered use and combine techniques from constraint programming, artificial intelligence and operations research. 1