Results 1 
5 of
5
Decomposable Graphical Gaussian Model Determination
, 1999
"... We propose a methodology for Bayesian model determination in decomposable graphical gaussian models. To achieve this aim we consider a hyper inverse Wishart prior distribution on the concentration matrix for each given graph. To ensure compatibility across models, such prior distributions are obt ..."
Abstract

Cited by 64 (12 self)
 Add to MetaCart
We propose a methodology for Bayesian model determination in decomposable graphical gaussian models. To achieve this aim we consider a hyper inverse Wishart prior distribution on the concentration matrix for each given graph. To ensure compatibility across models, such prior distributions are obtained by marginalisation from the prior conditional on the complete graph. We explore alternative structures for the hyperparameters of the latter, and their consequences for the model. Model determination is carried out by implementing a reversible jump MCMC sampler. In particular, the dimensionchanging move we propose involves adding or dropping an edge from the graph. We characterise the set of moves which preserve the decomposability of the graph, giving a fast algorithm for maintaining the junction tree representation of the graph at each sweep. As state variable, we propose to use the incomplete variancecovariance matrix, containing only the elements for which the correspondi...
Algebraic factor analysis: tetrads, pentads and beyond
"... Factor analysis refers to a statistical model in which observed variables are conditionally independent given fewer hidden variables, known as factors, and all the random variables follow a multivariate normal distribution. The parameter space of a factor analysis model is a subset of the cone of po ..."
Abstract

Cited by 28 (12 self)
 Add to MetaCart
Factor analysis refers to a statistical model in which observed variables are conditionally independent given fewer hidden variables, known as factors, and all the random variables follow a multivariate normal distribution. The parameter space of a factor analysis model is a subset of the cone of positive definite matrices. This parameter space is studied from the perspective of computational algebraic geometry. Gröbner bases and resultants are applied to compute the ideal of all polynomial functions that vanish on the parameter space. These polynomials, known as model invariants, arise from rank conditions on a symmetric matrix under elimination of the diagonal entries of the matrix. Besides revealing the geometry of the factor analysis model, the model invariants also furnish useful statistics for testing goodnessoffit. 1
Covariance Chains
 Bernoulli
, 2006
"... Covariance matrices which can be arranged in tridiagonal form are called covariance chains. They are used to clarify some issues of parameter equivalence and of independence equivalence for linear models in which a set of latent variables influences a set of observed variables. For this purpose, ort ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
Covariance matrices which can be arranged in tridiagonal form are called covariance chains. They are used to clarify some issues of parameter equivalence and of independence equivalence for linear models in which a set of latent variables influences a set of observed variables. For this purpose, orthogonal decompositions for covariance chains are derived first in explicit form. Covariance chains are also contrasted to concentration chains, for which estimation is explicit and simple. For this purpose, maximumlikelihood equations are derived first for exponential families when some parameters satisfy zero value constraints. From these equations explicit estimates are obtained, which are asymptotically efficient, and they are applied to covariance chains. Simulation results confirm the satisfactory behaviour of the explicit covariance chain estimates also in moderatesize samples.
Multiple testing and error control in Gaussian graphical model selection
 Statistical Science
"... Abstract. Graphical models provide a framework for exploration of multivariate dependence patterns. The connection between graph and statistical model is made by identifying the vertices of the graph with the observed variables and translating the pattern of edges in the graph into a pattern of cond ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
Abstract. Graphical models provide a framework for exploration of multivariate dependence patterns. The connection between graph and statistical model is made by identifying the vertices of the graph with the observed variables and translating the pattern of edges in the graph into a pattern of conditional independences that is imposed on the variables ’ joint distribution. Focusing on Gaussian models, we review classical graphical models. For these models the defining conditional independences are equivalent to vanishing of certain (partial) correlation coefficients associated with individual edges that are absent from the graph. Hence, Gaussian graphical model selection can be performed by multiple testing of hypotheses about vanishing (partial) correlation coefficients. We show and exemplify how this approach allows one to perform model selection while controlling error rates for incorrect edge inclusion. Key words and phrases: Acyclic directed graph, Bayesian network, bidirected graph, chain graph, concentration graph, covariance graph, DAG, graphical model, multiple testing, undirected graph. 1.
Compatible Prior Distributions for DAG models
, 2002
"... The application of certain Bayesian techniques, such as the Bayes factor and model averaging, requires the specification of prior distributions on the parameters of alternative models. We propose a new method for constructing compatible priors on the parameters of models nested in a given DAG (Direc ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
The application of certain Bayesian techniques, such as the Bayes factor and model averaging, requires the specification of prior distributions on the parameters of alternative models. We propose a new method for constructing compatible priors on the parameters of models nested in a given DAG (Directed Acyclic Graph) model, using a conditioning approach. We define a class of parameterisations consistent with the modular structure of the DAG and derive a procedure, invariant within this class, which we name reference conditioning.