Results 1  10
of
463
Risks for the long run: A potential resolution of asset pricing puzzles
 JOURNAL OF FINANCE
, 1994
"... We model consumption and dividend growth rates as containing (i) a small longrun predictable component and (ii) fluctuating economic uncertainty (consumption volatility). These dynamics, for which we provide empirical support, in conjunction with Epstein and Zin’s (1989) preferences, can explain ke ..."
Abstract

Cited by 350 (30 self)
 Add to MetaCart
We model consumption and dividend growth rates as containing (i) a small longrun predictable component and (ii) fluctuating economic uncertainty (consumption volatility). These dynamics, for which we provide empirical support, in conjunction with Epstein and Zin’s (1989) preferences, can explain key asset markets phenomena. In our economy, financial markets dislike economic uncertainty and better longrun growth prospects raise equity prices. The model can justify the equity premium, the riskfree rate, and the volatility of the market return, riskfree rate, and the pricedividend ratio. As in the data, dividend yields predict returns and the volatility of returns is timevarying.
Measuring and testing the impact of news on volatility
 Journal of Finance
, 1993
"... This paper introduces the News Impact Curve to measure how new information is incorporated into volatility estimates. A variety of new and existing ARCH models are compared and estimated with daily Japanese stock return data to determine the shape of the News Impact Curve. New diagnostic tests are p ..."
Abstract

Cited by 339 (11 self)
 Add to MetaCart
This paper introduces the News Impact Curve to measure how new information is incorporated into volatility estimates. A variety of new and existing ARCH models are compared and estimated with daily Japanese stock return data to determine the shape of the News Impact Curve. New diagnostic tests are presented which emphasize the asymmetry of the volatility response to news. A partially nonparametric ARCH model is introduced to allow the data to estimate this shape. A comparison of this model with the existing models suggests that the best models are one by Glosten Jaganathan and Runkle (GJR) and Nelson's EGARCE. Similar results hold on a precrash sample period but are less strong.
Foreign Speculators and Emerging Equity Markets
 Journal of Finance
, 2000
"... We propose a crosssectional timeseries model to assess the impact of market liberalizations in emerging equity markets on the cost of capital, volatility, beta, and correlation with world market returns. Liberalizations are defined by regulatory changes, the introduction of depositary receipts and ..."
Abstract

Cited by 276 (23 self)
 Add to MetaCart
We propose a crosssectional timeseries model to assess the impact of market liberalizations in emerging equity markets on the cost of capital, volatility, beta, and correlation with world market returns. Liberalizations are defined by regulatory changes, the introduction of depositary receipts and country funds, and structural breaks in equity capital f lows to the emerging markets. We control for other economic events that might confound the impact of foreign speculators on local equity markets. Across a range of specifications, the cost of capital always decreases after a capital market liberalization with the effect varying between 5 and 75 basis points. THROUGHOUT HISTORY AND IN MANY MARKET ECONOMIES, the speculator has been characterized as both a villain and a savior. Indeed, the reputation of the speculator generally depends on the country where he does business. In wellfunctioning advanced capital markets, such as the United States, the speculator is viewed as an integral par...
Emerging Equity Market Volatility
, 1997
"... Understanding volatility in emerging capital markets is important for determining the cost of capital and for evaluating direct investment and asset allocation decisions. We provide an approach that allows the relative importance of world and local information to change through time in both the expe ..."
Abstract

Cited by 157 (28 self)
 Add to MetaCart
Understanding volatility in emerging capital markets is important for determining the cost of capital and for evaluating direct investment and asset allocation decisions. We provide an approach that allows the relative importance of world and local information to change through time in both the expected returns and conditional variance processes. Our timeseries and crosssectional models analyze the reasons that volatility is different across emerging markets, particularly with respect to the timing of capital market reforms. We find that capital market liberalizations often increase the correlation between local market returns and the world market but do not drive up local market volatility.
An empirical investigation of continuoustime equity return models
 Journal of Finance
, 2002
"... This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronou ..."
Abstract

Cited by 134 (10 self)
 Add to MetaCart
This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronounced negative relationship between return and volatility innovations. We also find that the dominant empirical characteristics of the return process appear to be priced by the option market. Our analysis indicates a general correspondence between the evidence extracted from daily equityindex returns and the stylized features of the corresponding options market prices. MUCH ASSET AND DERIVATIVE PRICING THEORY is based on diffusion models for primary securities. However, prescriptions for practical applications derived from these models typically produce disappointing results. A possible explanation could be that analytic formulas for pricing and hedging are available for only a limited set of continuoustime representations for asset returns
Asymmetric correlations of equity portfolios
 Journal of Financial Economics
, 2002
"... University. We are especially grateful for suggestions from Geert Bekaert, Bob Hodrick, and Ken Singleton. We also thank an anonymous referee whose comments and suggestions greatly improved the paper. ..."
Abstract

Cited by 130 (1 self)
 Add to MetaCart
University. We are especially grateful for suggestions from Geert Bekaert, Bob Hodrick, and Ken Singleton. We also thank an anonymous referee whose comments and suggestions greatly improved the paper.
Stock Market Overreaction to Bad News in Good Times: A Rational Expectations Equilibrium Model
, 1999
"... This paper presents a dynamic, rational expectations equilibrium model of asset prices where the drift of fundamentals (dividends) shifts between two unobservable states at random times. I show that in equilibrium, investors' willingness to hedge against changes in their own "uncertainty" on the tru ..."
Abstract

Cited by 124 (9 self)
 Add to MetaCart
This paper presents a dynamic, rational expectations equilibrium model of asset prices where the drift of fundamentals (dividends) shifts between two unobservable states at random times. I show that in equilibrium, investors' willingness to hedge against changes in their own "uncertainty" on the true state makes stock prices overreact to bad news in good times and underreact to good news in bad times. I then show that this model is better able than con ventional models with no regime shifts to explain features of stock returns, including volatility clustering, "leverage effects," excess volatility and timevarying expected returns.
Asset pricing at the millennium
 Journal of Finance
"... This paper surveys the field of asset pricing. The emphasis is on the interplay between theory and empirical work and on the tradeoff between risk and return. Modern research seeks to understand the behavior of the stochastic discount factor ~SDF! that prices all assets in the economy. The behavior ..."
Abstract

Cited by 123 (3 self)
 Add to MetaCart
This paper surveys the field of asset pricing. The emphasis is on the interplay between theory and empirical work and on the tradeoff between risk and return. Modern research seeks to understand the behavior of the stochastic discount factor ~SDF! that prices all assets in the economy. The behavior of the term structure of real interest rates restricts the conditional mean of the SDF, whereas patterns of risk premia restrict its conditional volatility and factor structure. Stylized facts about interest rates, aggregate stock prices, and crosssectional patterns in stock returns have stimulated new research on optimal portfolio choice, intertemporal equilibrium models, and behavioral finance. This paper surveys the field of asset pricing. The emphasis is on the interplay between theory and empirical work. Theorists develop models with testable predictions; empirical researchers document “puzzles”—stylized facts that fail to fit established theories—and this stimulates the development of new theories. Such a process is part of the normal development of any science. Asset pricing, like the rest of economics, faces the special challenge that data are generated naturally rather than experimentally, and so researchers cannot control the quantity of data or the random shocks that affect the data. A particularly interesting characteristic of the asset pricing field is that these random shocks are also the subject matter of the theory. As Campbell, Lo, and MacKinlay ~1997, Chap. 1, p. 3! put it: What distinguishes financial economics is the central role that uncertainty plays in both financial theory and its empirical implementation. The starting point for every financial model is the uncertainty facing investors, and the substance of every financial model involves the impact of uncertainty on the behavior of investors and, ultimately, on mar* Department of Economics, Harvard University, Cambridge, Massachusetts
MULTIVARIATE GARCH MODELS: A SURVEY
"... This paper surveys the most important developments in multivariate ARCHtype modelling. It reviews the model specifications and inference methods, and identifies likely directions of future research. ..."
Abstract

Cited by 102 (7 self)
 Add to MetaCart
This paper surveys the most important developments in multivariate ARCHtype modelling. It reviews the model specifications and inference methods, and identifies likely directions of future research.
Portfolio selection in stochastic environments, Working Paper
 Review of Financial Studies
, 1999
"... In this article, I explicitly solve dynamic portfolio choice problems, up to the solution of an ordinary differential equation (ODE), when the asset returns are quadratic and the agent has a constant relative risk aversion (CRRA) coefficient. My solution includes as special cases many existing expli ..."
Abstract

Cited by 99 (7 self)
 Add to MetaCart
In this article, I explicitly solve dynamic portfolio choice problems, up to the solution of an ordinary differential equation (ODE), when the asset returns are quadratic and the agent has a constant relative risk aversion (CRRA) coefficient. My solution includes as special cases many existing explicit solutions of dynamic portfolio choice problems. I also present three applications that are not in the literature. Application 1 is the bond portfolio selection problem when bond returns are described by ‘‘quadratic term structure models.’ ’ Application 2 is the stock portfolio selection problem when stock return volatility is stochastic as in Heston model. Application 3 is a bond and stock portfolio selection problem when the interest rate is stochastic and stock returns display stochastic volatility. (JEL G11) There is substantial evidence of time variation in interest rates, expected returns, and asset return volatilities. Interest rates change over time, and although expected stock returns are not directly observed, future stock returns seem to be predictable using term structure variables and scaled prices such as dividend yields. 1 Similarly, there is welldocumented evidence