Results 1 
6 of
6
AInfinity Algebras in Representation Theory
, 2001
"... We give a brief introduction to A1algebras and show three contexts in which they appear in representation theory: the study of Yoneda algebras and Koszulity, the description of categories of ltered modules and the description of triangulated categories. Contents 1. Denitions, the bar construction, ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
We give a brief introduction to A1algebras and show three contexts in which they appear in representation theory: the study of Yoneda algebras and Koszulity, the description of categories of ltered modules and the description of triangulated categories. Contents 1. Denitions, the bar construction, the minimality theorem 1 2. Yoneda algebras, Koszulity and ltered modules 5 3. Description of triangulated categories 8 References 10 1. Definitions, the bar construction, the minimality theorem 1.1. Ainnity algebras and morphisms. We refer to [11] for a list of references and a topological motivation for the following denition: Let k be a eld. An A1  algebra over k is a Zgraded vector space A = M p2Z A p endowed with graded maps (=homogeneous klinear maps) mn : A
Homological Perturbation Theory And Computability Of Hochschild And Cyclic Homologies Of Cdgas
, 1997
"... . We establish an algorithm computing the homology of commutative dierential graded algebras (briey, CDGAs). The main tool in this approach is given by the Homological Perturbation Theory particularized for the algebra category (see [21]). Taking into account these results, we develop and rene some ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
. We establish an algorithm computing the homology of commutative dierential graded algebras (briey, CDGAs). The main tool in this approach is given by the Homological Perturbation Theory particularized for the algebra category (see [21]). Taking into account these results, we develop and rene some methods already known about the computation of the Hochschild and cyclic homologies of CDGAs. In the last section of the paper, we analyze the plocal homology of the iterated bar construction of a CDGA (p prime). 1. Introduction. The description of eÆcient algorithms of homological computation might be considered as a very important question in Homological Algebra, in order to use those processes mainly in the resolution of problems on algebraic topology; but this subject also inuence directly on the development of non so closedareas as Cohomological Physics (in this sense, we nd useful references in [12], [24], [25]) and Secondary Calculus ([14], [27], [28]). Working in the context ...
Computing Resolutions over Finite pGroups
, 2000
"... . A uniform and constructive approach for the computation of resolutions and for (co)homology computations for any nite pgroup is detailed. The resolutions we construct ([32]) are, as vector spaces, as small as the minimal resolution of IFp over the elementary abelian pgroup of the same order as t ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
. A uniform and constructive approach for the computation of resolutions and for (co)homology computations for any nite pgroup is detailed. The resolutions we construct ([32]) are, as vector spaces, as small as the minimal resolution of IFp over the elementary abelian pgroup of the same order as the group under study. Our implementations are based on the development of sophisticated algebraic data structures. Applications to calculating functional cocycles are given and the possibility of constructing interesting codes using such methods is presented. 1 Introduction In this paper, we present a uniform constructive approach to calculating relatively small resolutions over nite pgroups. The algorithm we use comes from [32, 8.1.8 and the penultimate paragraph of 9.4]. There has been a massive amount of work done on the structure of pgroups since the beginning of group theory. A good introduction is [22]. We combine mathematical and computer methods to construct the uniform resolut...
Homological Computations for pGroups
"... A uniform and constructive approach for the computation of resolutions and for (co)homology computations for any nite pgroup is detailed. The resolutions we construct ([29]) are, as vector spaces, as small as the minimal resolution of IFp over the elementary abelian pgroup of the same order as the ..."
Abstract
 Add to MetaCart
A uniform and constructive approach for the computation of resolutions and for (co)homology computations for any nite pgroup is detailed. The resolutions we construct ([29]) are, as vector spaces, as small as the minimal resolution of IFp over the elementary abelian pgroup of the same order as the group under study. Our implementations are based on the development of sophisticated algebraic data structures. Applications to calculating functional cocycles are given and the possibility of constructing interesting codes using such methods is presented. 1
"Coalgebra" Structures on 1Homological Models for Commutative Differential Graded Algebras
"... In [3] "mall" 1homological model H of a commutative differential graded algebra is described. Homological Perturbation Theory (HPT) [79] provides an explicit description of an A1coalgebra structure ( 1 ; 2 ; 3 ; : : :) of H. In this paper, we are mainly interested in the determination of the map ..."
Abstract
 Add to MetaCart
In [3] "mall" 1homological model H of a commutative differential graded algebra is described. Homological Perturbation Theory (HPT) [79] provides an explicit description of an A1coalgebra structure ( 1 ; 2 ; 3 ; : : :) of H. In this paper, we are mainly interested in the determination of the map 2 : H ! H H as a first step in the study of this structure. Developing the techniques given in [20] (inversion theory), we get an important improvement in the computation of 2 with regard to the first formula given by HPT. In the case of purely quadratic algebras, we sketch a procedure for giving the complete Hopf algebra structure of its 1homology.
An algorithm for computing the first homology groups of CDGAs with linear differential
, 1999
"... We design here a primary platform for computing the basic homological information of Commutative Differential Graded Algebras (briefly, CDGAs), endowed with linear di#erential. All the algorithms have been implemented in the framework settled by Mathematica, so that we can take advantage of the use ..."
Abstract
 Add to MetaCart
We design here a primary platform for computing the basic homological information of Commutative Differential Graded Algebras (briefly, CDGAs), endowed with linear di#erential. All the algorithms have been implemented in the framework settled by Mathematica, so that we can take advantage of the use of symbolic computation and many other powerful tools this system provides.