Results 1  10
of
63
A type system for certified binaries
 In ACM Symposium on Principles of Programming Languages
, 2002
"... A certified binary is a value together with a proof that the value satisfies a given specification. Existing compilers that generate certified code have focused on simple memory and controlflow safety rather than more advanced properties. In this paper, we present a general framework for explicitly ..."
Abstract

Cited by 84 (12 self)
 Add to MetaCart
A certified binary is a value together with a proof that the value satisfies a given specification. Existing compilers that generate certified code have focused on simple memory and controlflow safety rather than more advanced properties. In this paper, we present a general framework for explicitly representing complex propositions and proofs in typed intermediate and assembly languages. The new framework allows us to reason about certified programs that involve effects while still maintaining decidable typechecking. We show how to integrate an entire proof system (the calculus of inductive constructions) into a compiler intermediate language and how the intermediate language can undergo complex transformations (CPS and closure conversion) while preserving proofs represented in the type system. Our work provides a foundation for the process of automatically generating certified binaries in a typetheoretic framework. 1
The Theory of LEGO  A Proof Checker for the Extended Calculus of Constructions
, 1994
"... LEGO is a computer program for interactive typechecking in the Extended Calculus of Constructions and two of its subsystems. LEGO also supports the extension of these three systems with inductive types. These type systems can be viewed as logics, and as meta languages for expressing logics, and LEGO ..."
Abstract

Cited by 68 (10 self)
 Add to MetaCart
LEGO is a computer program for interactive typechecking in the Extended Calculus of Constructions and two of its subsystems. LEGO also supports the extension of these three systems with inductive types. These type systems can be viewed as logics, and as meta languages for expressing logics, and LEGO is intended to be used for interactively constructing proofs in mathematical theories presented in these logics. I have developed LEGO over six years, starting from an implementation of the Calculus of Constructions by G erard Huet. LEGO has been used for problems at the limits of our abilities to do formal mathematics. In this thesis I explain some aspects of the metatheory of LEGO's type systems leading to a machinechecked proof that typechecking is decidable for all three type theories supported by LEGO, and to a verified algorithm for deciding their typing judgements, assuming only that they are normalizing. In order to do this, the theory of Pure Type Systems (PTS) is extended and f...
Some lambda calculus and type theory formalized
 Journal of Automated Reasoning
, 1999
"... Abstract. We survey a substantial body of knowledge about lambda calculus and Pure Type Systems, formally developed in a constructive type theory using the LEGO proof system. On lambda calculus, we work up to an abstract, simplified, proof of standardization for beta reduction, that does not mention ..."
Abstract

Cited by 53 (7 self)
 Add to MetaCart
Abstract. We survey a substantial body of knowledge about lambda calculus and Pure Type Systems, formally developed in a constructive type theory using the LEGO proof system. On lambda calculus, we work up to an abstract, simplified, proof of standardization for beta reduction, that does not mention redex positions or residuals. Then we outline the meta theory of Pure Type Systems, leading to the strengthening lemma. One novelty is our use of named variables for the formalization. Along the way we point out what we feel has been learned about general issues of formalizing mathematics, emphasizing the search for formal definitions that are convenient for formal proof and convincingly represent the intended informal concepts.
Proofassistants using Dependent Type Systems
, 2001
"... this article we will not attempt to describe all the dierent possible choices of type theories. Instead we want to discuss the main underlying ideas, with a special focus on the use of type theory as the formalism for the description of theories including proofs ..."
Abstract

Cited by 47 (4 self)
 Add to MetaCart
this article we will not attempt to describe all the dierent possible choices of type theories. Instead we want to discuss the main underlying ideas, with a special focus on the use of type theory as the formalism for the description of theories including proofs
Constructions, Inductive Types and Strong Normalization
, 1993
"... This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and typechecking, based on the equalityasjudgement presentation. We present a settheoretic notio ..."
Abstract

Cited by 31 (2 self)
 Add to MetaCart
This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and typechecking, based on the equalityasjudgement presentation. We present a settheoretic notion of model, CCstructures, and use this to give a new strong normalization proof based on a modification of the realizability interpretation. An extension of the core calculus by inductive types is investigated and we show, using the example of infinite trees, how the realizability semantics and the strong normalization argument can be extended to nonalgebraic inductive types. We emphasize that our interpretation is sound for large eliminations, e.g. allows the definition of sets by recursion. Finally we apply the extended calculus to a nontrivial problem: the formalization of the strong normalization argument for Girard's System F. This formal proof has been developed and checked using the...
General recursion via coinductive types
 Logical Methods in Computer Science
"... Vol. 1 (2:1) 2005, pp. 1–28 ..."
Monadic Encapsulation of Effects: A Revised Approach (Extended Version)
 Journal of Functional Programming
, 1999
"... Launchbury and Peyton Jones came up with an ingenious idea for embedding regions of imperative programming in a pure functional language like Haskell. The key idea was based on a simple modification of HindleyMilner's type system. Our first contribution is to propose a more natural encapsulation co ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
Launchbury and Peyton Jones came up with an ingenious idea for embedding regions of imperative programming in a pure functional language like Haskell. The key idea was based on a simple modification of HindleyMilner's type system. Our first contribution is to propose a more natural encapsulation construct exploiting higherorder kinds, which achieves the same encapsulation effect, but avoids the ad hoc type parameter of the original proposal. The second contribution is a type safety result for encapsulation of strict state using both the original encapsulation construct and the newly introduced one. We establish this result in a more expressive context than the original proposal, namely in the context of the higherorder lambdacalculus. The third contribution is a type safety result for encapsulation of lazy state in the higherorder lambdacalculus. This result resolves an outstanding open problem on which previous proof attempts failed. In all cases, we formalize the intended implementations as simple bigstep operational semantics on untyped terms, which capture interesting implementation details not captured by the reduction semantics proposed previously. 1
Typed Generic Traversal With Term Rewriting Strategies
 Journal of Logic and Algebraic Programming
, 2002
"... A typed model of strategic term rewriting is developed. The key innovation is that generic. The calculus traversal is covered. To this end, we define a typed rewriting calculus S ′ γ employs a manysorted type system extended by designated generic strategy types γ. We consider two generic strategy t ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
A typed model of strategic term rewriting is developed. The key innovation is that generic. The calculus traversal is covered. To this end, we define a typed rewriting calculus S ′ γ employs a manysorted type system extended by designated generic strategy types γ. We consider two generic strategy types, namely the types of typepreserving and typeunifying strategies. S ′ γ offers traversal combinators to construct traversals or schemes thereof from manysorted and generic strategies. The traversal combinators model different forms of onestep traversal, that is, they process the immediate subterms of a given term without anticipating any scheme of recursion into terms. To inhabit generic types, we need to add a fundamental combinator to lift a manysorted strategy s to a generic type γ. This step is called strategy extension. The semantics of the corresponding combinator states that s is only applied if the type of the term at hand fits, otherwise the extended strategy fails. This approach dictates that the semantics of strategy application must be typedependent to a certain extent. Typed strategic term rewriting with coverage of generic term traversal is a simple but expressive model of generic programming. It has applications in program