Results 1 
7 of
7
Subtyping Dependent Types
, 2000
"... The need for subtyping in typesystems with dependent types has been realized for some years. But it is hard to prove that systems combining the two features have fundamental properties such as subject reduction. Here we investigate a subtyping extension of the system *P, which is an abstract versio ..."
Abstract

Cited by 70 (6 self)
 Add to MetaCart
The need for subtyping in typesystems with dependent types has been realized for some years. But it is hard to prove that systems combining the two features have fundamental properties such as subject reduction. Here we investigate a subtyping extension of the system *P, which is an abstract version of the type system of the Edinburgh Logical Framework LF. By using an equivalent formulation, we establish some important properties of the new system *P^, including subject reduction. Our analysis culminates in a complete and terminating algorithm which establishes the decidability of typechecking.
Formal Objects in Type Theory Using Very Dependent Types
 In Foundations of Object Oriented Languages 3
, 1996
"... In this paper we present an extension to basic type theory to allow a uniform construction of abstract data types (ADTs) having many of the properties of objects, including abstraction, subtyping, and inheritance. The extension relies on allowing type dependencies for function types to range over ..."
Abstract

Cited by 29 (8 self)
 Add to MetaCart
In this paper we present an extension to basic type theory to allow a uniform construction of abstract data types (ADTs) having many of the properties of objects, including abstraction, subtyping, and inheritance. The extension relies on allowing type dependencies for function types to range over a wellfounded domain. Using the propositionsastypes correspondence, abstract data types can be identified with logical theories, and proofs of the theories are the objects that inhabit the corresponding ADT. 1 Introduction In the past decade, there has been considerable progress in developing formal account of a theory of objects. One property of object oriented languages that make them popular is that they attack the problem of scale: all object oriented languages provide mechanisms for providing software modularity and reuse. In addition, the mechanisms are intuitive enough to be followed easily by novice programmers. During the same decade, the body of formal mathematics has be...
Typed Multiset Rewriting Specifications of Security Protocols
, 2001
"... The language MSR has successfully been used in the past to prove undecidability results about security protocols modeled according to the DolevYao abstraction. In this paper, we revise this formalism into a flexible specification framework for complex cryptoprotocols. More specifically, we equip i ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
The language MSR has successfully been used in the past to prove undecidability results about security protocols modeled according to the DolevYao abstraction. In this paper, we revise this formalism into a flexible specification framework for complex cryptoprotocols. More specifically, we equip it with an extensible typing infrastructure based on dependent types with subsorting, which elegantly captures and enforces basic relations among objects, such as between a public key and its inverse. We also introduce the notion of memory predicate, where principals can store information that survives role termination. These predicates allow specifying complex protocols structured into a coordinated collection of subprotocols. Moreover, they permit describing different attacker models using the same syntax as any other role. We demonstrate this possibility and the precision of our type system by presenting two formalizations of the DolevYao intruder. We discuss two execution models for this revised version of MSR, one sequential and one parallel, and prove that the latter can be simulated by the former.
Subtyping with Power Types
 of Lecture Notes in Computer Science
, 2000
"... This paper introduces a typed #calculus called # Power , a predicative reformulation of part of Cardelli's power type system. Power types integrate subtyping into the typing judgement, allowing bounded abstraction and bounded quantification over both types and terms. This gives a powerful and co ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
This paper introduces a typed #calculus called # Power , a predicative reformulation of part of Cardelli's power type system. Power types integrate subtyping into the typing judgement, allowing bounded abstraction and bounded quantification over both types and terms. This gives a powerful and concise system of dependent types, but leads to di#culty in the metatheory and semantics which has impeded the application of power types so far. Basic properties of # Power are proved here, and it is given a model definition using a form of applicative structures. A particular novelty is the auxiliary system for rough typing, which assigns simple types to terms in # Power . These "rough" types are used to prove strong normalization of the calculus and to structure models, allowing a novel form of containment semantics without a universal domain.
Subtyping Parametric and Dependent Types
, 1996
"... A type may be a subtype of another type. The intuition about this should be clear: a type is a type of data, some data then may live in a given type as well as in a larger one, up to a simple "transformation". The advantage is that those data may be "seen" or used in different contexts. The formal ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
A type may be a subtype of another type. The intuition about this should be clear: a type is a type of data, some data then may live in a given type as well as in a larger one, up to a simple "transformation". The advantage is that those data may be "seen" or used in different contexts. The formal treatment of this intuition, though, is not so obvious, in particular when data may be programs. In Object Oriented Programming, where the issue of "reusing data" is crucial, there has been a longlasting discussion on "inheritance" and ... little agreement. There are several ways to understand and formalize inheritance, which depend on the specific programming environment used. Since early work of Cardelli and Wegner, there has been a large amount of papers developing several possible functional approaches to inheritance, as subtyping. Indeed, functional subtyping captures only one point of view on inheritance, yet this notion largely motivated most of that work. Whethe
Subtyping Parametric and Dependent Types  An introduction
, 1996
"... A type may be a subtype of another type. The intuition about this should be clear: a type is a type of data, some data then may live in a given type as well as in a larger one, up to a simple "transformation". The advantage is that those data may be "seen" or used in different contexts. The formal ..."
Abstract
 Add to MetaCart
A type may be a subtype of another type. The intuition about this should be clear: a type is a type of data, some data then may live in a given type as well as in a larger one, up to a simple "transformation". The advantage is that those data may be "seen" or used in different contexts. The formal treatment of this intuition, though, is not so obvious, in particular when data may be programs. In Object Oriented Programming, where the issue of "reusing data" is crucial, there has been a longlasting discussion on "inheritance" and ... little agreement. There are several ways to understand and formalize inheritance, which depend on the specific programming environment used. Since early work of Cardelli and Wegner, there has been a large amount of papers developing several possible functional approaches to inheritance, as subtyping. Indeed, functional subtyping captures only one point of view on inheritance, yet this notion largely motivated most of that work. Whethe
Dependent Type System with Subtyping  Type Level Transitivity Elimination
, 1996
"... Dependent type systems have been the basis of many proof development enviroments. In [AC96], a system P is proposed as a subtyping extension of the dependent type system P[Bar92] (also called \Pi[Dow95]). P has nice metatheoretic properties including subject reduction and decidability, but transit ..."
Abstract
 Add to MetaCart
Dependent type systems have been the basis of many proof development enviroments. In [AC96], a system P is proposed as a subtyping extension of the dependent type system P[Bar92] (also called \Pi[Dow95]). P has nice metatheoretic properties including subject reduction and decidability, but transitivity elimination is restricted to the fi 2 normalized types. In this report, we propose a system \Pi , which is equivalent to P , but it has type level transitivity eliminatioin property. This feature distinguishes our approach from the existing subtyping systems with reduction relations in types. e.g. P[AC96], F ! [SP94], F ! [Com94], where transitivity elimination only holds for normalized types. Metatheoretic properties including subject reduction and decidability are established. The system is shown to be equivalent with P in typing, kinding and context formation. The type checking algorithm is more clear and efficient than P . The technique is suitable for future extensions and...