Results 1  10
of
39
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 453 (52 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, assessing predictions, handling noisy data and outliers, improving the quality of predictions by tuning t parameters, interference between old and new data, implementing locally weighted learning e ciently, and applications of locally weighted learning. A companion paper surveys how locally weighted learning can be used in robot learning and control.
The Skyline Operator
 IN ICDE
, 2001
"... We propose to extend database systems by a Skyline operation. This operation filters out a set of interesting points from a potentially large set of data points. A point is interesting if it is not dominated by any other point. For example, a hotel might be interesting for somebody traveling to Nass ..."
Abstract

Cited by 386 (3 self)
 Add to MetaCart
We propose to extend database systems by a Skyline operation. This operation filters out a set of interesting points from a potentially large set of data points. A point is interesting if it is not dominated by any other point. For example, a hotel might be interesting for somebody traveling to Nassau if no other hotel is both cheaper and closer to the beach. We show how SQL can be extended to pose Skyline queries, present and evaluate alternative algorithms to implement the Skyline operation, and show how this operation can be combined with other database operations (e.g., join and Top N).
Shooting Stars in the Sky: An Online Algorithm for Skyline Queries
 In VLDB
, 2002
"... Skyline queries ask for a set of interesting points from a potentially large set of data points. If we are traveling, for instance, a restaurant might be interesting if there is no other restaurant which is nearer, cheaper, and has better food. Skyline queries retrieve all such interesting restauran ..."
Abstract

Cited by 192 (0 self)
 Add to MetaCart
Skyline queries ask for a set of interesting points from a potentially large set of data points. If we are traveling, for instance, a restaurant might be interesting if there is no other restaurant which is nearer, cheaper, and has better food. Skyline queries retrieve all such interesting restaurants so that the user can choose the most promising one. In this paper, we present a new online algorithm that computes the Skyline. Unlike most existing algorithms that compute the Skyline in a batch, this algorithm returns the first results immediately, produces more and more results continuously, and allows the user to give preferences during the running time of the algorithm so that the user can control what kind of results are produced next (e.g., rather cheap or rather near restaurants).
An optimal and progressive algorithm for skyline queries
 In SIGMOD
, 2003
"... The skyline of a set of ddimensional points contains the points that are not dominated by any other point on all dimensions. Skyline computation has recently received considerable attention in the database community, especially for progressive (or online) algorithms that can quickly return the firs ..."
Abstract

Cited by 159 (14 self)
 Add to MetaCart
The skyline of a set of ddimensional points contains the points that are not dominated by any other point on all dimensions. Skyline computation has recently received considerable attention in the database community, especially for progressive (or online) algorithms that can quickly return the first skyline points without having to read the entire data file. Currently, the most efficient algorithm is NN (nearest neighbors), which applies the divideandconquer framework on datasets indexed by Rtrees. Although NN has some desirable features (such as high speed for returning the initial skyline points, applicability to arbitrary data distributions and dimensions), it also presents several inherent disadvantages (need for duplicate elimination if d>2, multiple accesses of the same node, large space overhead). In this paper we develop BBS (branchandbound skyline), a progressive algorithm also based on nearest neighbor search, which is IO optimal, i.e., it performs a single access only to those Rtree nodes that may contain skyline points. Furthermore, it does not retrieve duplicates and its space overhead is significantly smaller than that of NN. Finally, BBS is simple to implement and can be efficiently applied to a variety of alternative skyline queries. An analytical and experimental comparison shows that BBS outperforms NN (usually by orders of magnitude) under all problem instances. 1.
Progressive Skyline Computation in Database Systems
 ACM TRANS. DATABASE SYST
, 2005
"... The skyline of a ddimensional dataset contains the points that are not dominated by any other point on all dimensions. Skyline computation has recently received considerable attention in the database community, especially for progressive methods that can quickly return the initial results without r ..."
Abstract

Cited by 130 (11 self)
 Add to MetaCart
The skyline of a ddimensional dataset contains the points that are not dominated by any other point on all dimensions. Skyline computation has recently received considerable attention in the database community, especially for progressive methods that can quickly return the initial results without reading the entire database. All the existing algorithms, however, have some serious shortcomings which limit their applicability in practice. In this article we develop branch skyline (BBS), an algorithm based on nearestneighbor search, which is I/O optimal, that is, it performs a single access only to those nodes that may contain skyline points. BBS is simple to implement and supports all types of progressive processing (e.g., user preferences, arbitrary dimensionality, etc). Furthermore, we propose several interesting variations of skyline computation, and show how BBS can be applied for their efficient processing.
The approximation power of moving leastsquares
 Math. Comp
, 1998
"... Abstract. A general method for nearbest approximations to functionals on Rd, using scattereddata information is discussed. The method is actually the moving leastsquares method, presented by the BackusGilbert approach. It is shown that the method works very well for interpolation, smoothing and ..."
Abstract

Cited by 108 (6 self)
 Add to MetaCart
Abstract. A general method for nearbest approximations to functionals on Rd, using scattereddata information is discussed. The method is actually the moving leastsquares method, presented by the BackusGilbert approach. It is shown that the method works very well for interpolation, smoothing and derivatives ’ approximations. For the interpolation problem this approach gives Mclain’s method. The method is nearbest in the sense that the local error is bounded in terms of the error of a local best polynomial approximation. The interpolation approximation in Rd is shown to be a C ∞ function, and an approximation order result is proven for quasiuniform sets of data points. 1.
Viewdependent object recognition by monkeys
 Current Biology
, 1994
"... How does the brain recognize threedimensional objects? An initial step towards the understanding of the neural substrate of visual object recognition can be taken by studying first the nature of object representation, as manifested in behavioral studies with humans or nonhuman primates. One fund ..."
Abstract

Cited by 94 (13 self)
 Add to MetaCart
How does the brain recognize threedimensional objects? An initial step towards the understanding of the neural substrate of visual object recognition can be taken by studying first the nature of object representation, as manifested in behavioral studies with humans or nonhuman primates. One fundamental question is whether these representations are object or viewer centered. We trained monkeys to recognize computer rendered objects presented from an arbitrarily chosen training view, and subsequently tested their abilityto generalize recognition for views generated by mathematically rotating the objects around any arbitrary axis.
Stabbing the sky: Efficient skyline computation over sliding windows
 In ICDE
, 2005
"... We consider the problem of efficiently computing the skyline against the most recent N elements in a data stream seen so far. Specifically, we study the nofN skyline queries; that is, computing the skyline for the most recent n (∀n ≤ N) elements. Firstly, we developed an effective pruning techniqu ..."
Abstract

Cited by 64 (6 self)
 Add to MetaCart
We consider the problem of efficiently computing the skyline against the most recent N elements in a data stream seen so far. Specifically, we study the nofN skyline queries; that is, computing the skyline for the most recent n (∀n ≤ N) elements. Firstly, we developed an effective pruning technique to minimize the number of elements to be kept. It can be shown that on average storing only O(log d N) elements from the most recent N elements is sufficient to support the precise computation of all nofN skyline queries in a ddimension space if the data distribution on each dimension is independent. Then, a novel encoding scheme is proposed, together with efficient update techniques, for the stored elements, so that computing an nofN skyline query in a ddimension space takes O(log N + s) time that is reduced to O(d log log N + s) if the data distribution is independent, where s is the number of skyline points. Thirdly, a novel trigger based technique is provided to process continuous nofN skyline queries with O(δ) time to update the current result per new data element and O(log s) time to update the trigger list per result change, where δ is the number of element changes from the current result to the new result. Finally, we extend our techniques to computing the skyline against an arbitrary window in the most recent N elements. Besides theoretical performance guarantees, our extensive experiments demonstrated that the new techniques can support online skyline query computation over very rapid data streams. 1
The Partition of Unity Method
 International Journal of Numerical Methods in Engineering
, 1996
"... A new finite element method is presented that features the ability to include in the finite element space knowledge about the partial differential equation being solved. This new method can therefore be more efficient than the usual finite element methods. An additional feature of the partitionofu ..."
Abstract

Cited by 54 (2 self)
 Add to MetaCart
A new finite element method is presented that features the ability to include in the finite element space knowledge about the partial differential equation being solved. This new method can therefore be more efficient than the usual finite element methods. An additional feature of the partitionofunity method is that finite element spaces of any desired regularity can be constructed very easily. This paper includes a convergence proof of this method and illustrates its efficiency by an application to the Helmholtz equation for high wave numbers. The basic estimates for aposteriori error estimation for this new method are also proved. Key words: Finite element method, meshless finite element method, finite element methods for highly oscillatory solutions TICAM, The University of Texas at Austin, Austin, TX 78712. Research was partially supported by US Office of Naval Research under grant N0001490J1030 y Seminar for Applied Mathematics, ETH Zurich, CH8092 Zurich, Switzerland....
Curve reconstruction from unorganized points
 Computer Aided Geometric Design
, 2000
"... We present an algorithm to approximate a set of unorganized points with a simple curve without selfintersections. The moving leastsquares method has a good ability to reduce a point cloud to a thin curvelike shape which is a nearbest approximation of the point set. In this paper, an improved mov ..."
Abstract

Cited by 50 (3 self)
 Add to MetaCart
We present an algorithm to approximate a set of unorganized points with a simple curve without selfintersections. The moving leastsquares method has a good ability to reduce a point cloud to a thin curvelike shape which is a nearbest approximation of the point set. In this paper, an improved moving leastsquares technique is suggested using Euclidean minimum spanning tree, region expansion and refining iteration. After thinning a given point cloud using the improved moving leastsquares technique we can easily reconstruct a smooth curve. As an application, a pipe surface reconstruction algorithm is presented.