Results 1 
6 of
6
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 759 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Learning Bayes net structure from sparse data sets
, 2001
"... There are essentially two kinds of approaches for learning the structure of Bayesian Networks (BNs) from data. The first approach tries to find a graph which satis es all the constraints implied by the empirical conditional independencies measured in the data [PV91, SGS00a, Shi00]. The second approa ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
(Show Context)
There are essentially two kinds of approaches for learning the structure of Bayesian Networks (BNs) from data. The first approach tries to find a graph which satis es all the constraints implied by the empirical conditional independencies measured in the data [PV91, SGS00a, Shi00]. The second approach searches through the space of models (either DAGs or PDAGs), and uses some scoring metric (typically Bayesian or some approximation, such as BIC/MDL) to evaluate the models [CH92, Hec95, Hec98, Kra98], typically returning the highest scoring model found. Our main interest is in learning BN structure from gene expression data [FLNP00, HGJY01, MM99, SGS00b]. In domains such as this, where the ratio of the number of observations to the number of variables is low (i.e., when we have sparse data), selecting a threshold for the conditional independence (CI) tests can be tricky, and repeated use of such tests can lead to inconsistencies [DD99]. Bayesian s...
A comparison of marginal likelihood computation methods
 Compstat: Proceedings in Computational Statistics
, 2002
"... ..."
Mail Stop 10R
"... ETS research prior to publication. They are available without charge from: Research Publications Office ..."
Abstract
 Add to MetaCart
ETS research prior to publication. They are available without charge from: Research Publications Office
INFORMATION TO USERS
, 2001
"... Bayes factors for variance component testing in generalized linear mixed models ..."
Abstract
 Add to MetaCart
Bayes factors for variance component testing in generalized linear mixed models
unknown title
, 2002
"... In a Bayesian analysis, di®erent models can be compared on the basis of the expected or marginal likelihood they attain. Many methods have been devised to compute the marginal likelihood, but simplicity is not the strongest point of most methods. At the same time, the precision of methods is often q ..."
Abstract
 Add to MetaCart
(Show Context)
In a Bayesian analysis, di®erent models can be compared on the basis of the expected or marginal likelihood they attain. Many methods have been devised to compute the marginal likelihood, but simplicity is not the strongest point of most methods. At the same time, the precision of methods is often questionable. In this paper several methods are presented in a common framework. The explanation of the di®erences is followed by an application, in which the precision of the methods is tested on a simple regression model where a comparison with analytical results is possible. JEL classi¯cation: C11, C52, C63