Results 1  10
of
40
Succinct indexable dictionaries with applications to encoding kary trees and multisets
 In Proceedings of the 13th Annual ACMSIAM Symposium on Discrete Algorithms (SODA
"... We consider the indexable dictionary problem, which consists of storing a set S ⊆ {0,...,m − 1} for some integer m, while supporting the operations of rank(x), which returns the number of elements in S that are less than x if x ∈ S, and −1 otherwise; and select(i) which returns the ith smallest ele ..."
Abstract

Cited by 191 (7 self)
 Add to MetaCart
We consider the indexable dictionary problem, which consists of storing a set S ⊆ {0,...,m − 1} for some integer m, while supporting the operations of rank(x), which returns the number of elements in S that are less than x if x ∈ S, and −1 otherwise; and select(i) which returns the ith smallest element in S. We give a data structure that supports both operations in O(1) time on the RAM model and requires B(n,m)+ o(n)+O(lg lg m) bits to store a set of size n, where B(n,m) = ⌈ lg ( m) ⌉ n is the minimum number of bits required to store any nelement subset from a universe of size m. Previous dictionaries taking this space only supported (yes/no) membership queries in O(1) time. In the cell probe model we can remove the O(lg lg m) additive term in the space bound, answering a question raised by Fich and Miltersen, and Pagh. We present extensions and applications of our indexable dictionary data structure, including: • an informationtheoretically optimal representation of a kary cardinal tree that supports standard operations in constant time, • a representation of a multiset of size n from {0,...,m − 1} in B(n,m+n) + o(n) bits that supports (appropriate generalizations of) rank and select operations in constant time, and • a representation of a sequence of n nonnegative integers summing up to m in B(n,m + n) + o(n) bits that supports prefix sum queries in constant time. 1
Breaking a TimeandSpace Barrier in Constructing FullText Indices
"... Suffix trees and suffix arrays are the most prominent fulltext indices, and their construction algorithms are well studied. It has been open for a long time whether these indicescan be constructed in both o(n log n) time and o(n log n)bit working space, where n denotes the length of the text. Int ..."
Abstract

Cited by 50 (3 self)
 Add to MetaCart
Suffix trees and suffix arrays are the most prominent fulltext indices, and their construction algorithms are well studied. It has been open for a long time whether these indicescan be constructed in both o(n log n) time and o(n log n)bit working space, where n denotes the length of the text. Inthe literature, the fastest algorithm runs in O(n) time, whileit requires O(n log n)bit working space. On the other hand,the most spaceefficient algorithm requires O(n)bit working space while it runs in O(n log n) time. This paper breaks the longstanding timeandspace barrier under the unitcost word RAM. We give an algorithm for constructing the suffix array which takes O(n) time and O(n)bit working space, for texts with constantsize alphabets. Note that both the time and the space bounds are optimal. For constructing the suffix tree, our algorithm requires O(n logffl n) time and O(n)bit working space forany 0! ffl! 1. Apart from that, our algorithm can alsobe adopted to build other existing fulltext indices, such as
Timespace tradeoffs for predecessor search
 In Proc. 38th ACM Sympos. Theory Comput
, 2006
"... We develop a new technique for proving cellprobe lower bounds for static data structures. Previous lower bounds used a reduction to communication games, which was known not to be tight by counting arguments. We give the first lower bound for an explicit problem which breaks this communication compl ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
We develop a new technique for proving cellprobe lower bounds for static data structures. Previous lower bounds used a reduction to communication games, which was known not to be tight by counting arguments. We give the first lower bound for an explicit problem which breaks this communication complexity barrier. In addition, our bounds give the first separation between polynomial and near linear space. Such a separation is inherently impossible by communication complexity. Using our lower bound technique and new upper bound constructions, we obtain tight bounds for searching predecessors among a static set of integers. Given a set Y of n integers of ℓ bits each, the goal is to efficiently find predecessor(x) = max {y ∈ Y  y ≤ x}. For this purpose, we represent Y on a RAM with word length w using S words of space. Defining a = lg S n +lg w, we show that the optimal search time is, up to constant factors: logw n lg min ℓ−lg n
Logarithmic lower bounds in the cellprobe model
 SIAM Journal on Computing
"... Abstract. We develop a new technique for proving cellprobe lower bounds on dynamic data structures. This enables us to prove Ω(lg n) bounds, breaking a longstanding barrier of Ω(lg n/lg lg n). We can also prove the first Ω(lgB n) lower bound in the external memory model, without assumptions on the ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
Abstract. We develop a new technique for proving cellprobe lower bounds on dynamic data structures. This enables us to prove Ω(lg n) bounds, breaking a longstanding barrier of Ω(lg n/lg lg n). We can also prove the first Ω(lgB n) lower bound in the external memory model, without assumptions on the data structure. We use our technique to prove better bounds for the partialsums problem, dynamic connectivity and (by reductions) other dynamic graph problems. Our proofs are surprisingly simple and clean. The bounds we obtain are often optimal, and lead to a nearly complete understanding of the problems. We also present new matching upper bounds for the partialsums problem. Key words. cellprobe complexity, lower bounds, data structures, dynamic graph problems, partialsums problem AMS subject classification. 68Q17
Dynamic Ordered Sets with Exponential Search Trees
 Combination of results presented in FOCS 1996, STOC 2000 and SODA
, 2001
"... We introduce exponential search trees as a novel technique for converting static polynomial space search structures for ordered sets into fullydynamic linear space data structures. This leads to an optimal bound of O ( √ log n/log log n) for searching and updating a dynamic set of n integer keys i ..."
Abstract

Cited by 26 (1 self)
 Add to MetaCart
We introduce exponential search trees as a novel technique for converting static polynomial space search structures for ordered sets into fullydynamic linear space data structures. This leads to an optimal bound of O ( √ log n/log log n) for searching and updating a dynamic set of n integer keys in linear space. Here searching an integer y means finding the maximum key in the set which is smaller than or equal to y. This problem is equivalent to the standard text book problem of maintaining an ordered set (see, e.g., Cormen, Leiserson, Rivest, and Stein: Introduction to Algorithms, 2nd ed., MIT Press, 2001). The best previous deterministic linear space bound was O(log n/log log n) due Fredman and Willard from STOC 1990. No better deterministic search bound was known using polynomial space.
Lower bounds for dynamic connectivity
 STOC
, 2004
"... We prove an Ω(lg n) cellprobe lower bound on maintaining connectivity in dynamic graphs, as well as a more general tradeoff between updates and queries. Our bound holds even if the graph is formed by disjoint paths, and thus also applies to trees and plane graphs. The bound is known to be tight fo ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
We prove an Ω(lg n) cellprobe lower bound on maintaining connectivity in dynamic graphs, as well as a more general tradeoff between updates and queries. Our bound holds even if the graph is formed by disjoint paths, and thus also applies to trees and plane graphs. The bound is known to be tight for these restricted cases, proving optimality of these data structures (e.g., Sleator and Tarjan’s dynamic trees). Our tradeoff is known to be tight for trees, and the best two data structures for dynamic connectivity in general graphs are points on our tradeoff curve. In this sense these two data structures are optimal, and this tightness serves as strong evidence that our lower bounds are the best possible. From a more theoretical perspective, our result is the first logarithmic cellprobe lower bound for any problem in the natural class of dynamic language membership problems, breaking the long standing record of Ω(lg n / lg lg n). In this sense, our result is the first datastructure lower bound that is “truly ” logarithmic, i.e., logarithmic in the problem size counted in bits. Obtaining such a bound is listed as one of three major challenges for future research by Miltersen [13] (the other two challenges remain unsolved). Our techniques form a general framework for proving cellprobe lower bounds on dynamic data structures. We show how our framework also applies to the partialsums problem to obtain a nearly complete understanding of the problem in cellprobe and algebraic models, solving several previously posed open problems.
Transdichotomous Results in Computational Geometry, II: Offline Search
, 2010
"... We reexamine fundamental problems from computational geometry in the word RAM model, where input coordinates are integers that fit in a machine word. We develop a new algorithm for offline point location, a twodimensional analog of sorting where one needs to order points with respect to segments. T ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
We reexamine fundamental problems from computational geometry in the word RAM model, where input coordinates are integers that fit in a machine word. We develop a new algorithm for offline point location, a twodimensional analog of sorting where one needs to order points with respect to segments. This result implies, for example, that the convex hull of n points in three dimensions can be constructed in (randomized) time n·2 O( √ lglgn). Similar bounds hold for numerous other geometric problems, such as planar Voronoi diagrams, planar offline nearest neighbor search, line segment intersection, and triangulation of nonsimple polygons. In FOCS’06, we developed a data structure for online point location, which implied a bound of O(n lgn lglgn) for threedimensional convex hulls and the other problems. Our current bounds are dramatically better, and a convincing improvement over the classic O(nlgn) algorithms. As in the field of integer sorting, the main challenge is to find ways to manipulate information, while avoiding the online problem (in that case, predecessor search).
UNIFYING THE LANDSCAPE OF CELLPROBE LOWER BOUNDS
, 2008
"... We show that a large fraction of the datastructure lower bounds known today in fact follow by reduction from the communication complexity of lopsided (asymmetric) set disjointness. This includes lower bounds for: • highdimensional problems, where the goal is to show large space lower bounds. • co ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
We show that a large fraction of the datastructure lower bounds known today in fact follow by reduction from the communication complexity of lopsided (asymmetric) set disjointness. This includes lower bounds for: • highdimensional problems, where the goal is to show large space lower bounds. • constantdimensional geometric problems, where the goal is to bound the query time for space O(n·polylogn). • dynamic problems, where we are looking for a tradeoff between query and update time. (In this case, our bounds are slightly weaker than the originals, losing a lglgn factor.) Our reductions also imply the following new results: • an Ω(lgn/lglgn) bound for 4dimensional range reporting, given space O(n · polylogn). This is quite timely, since a recent result [39] solved 3D reporting in O(lg 2 lgn) time, raising the prospect that higher dimensions could also be easy. • a tight space lower bound for the partial match problem, for constant query time. • the first lower bound for reachability oracles. In the process, we prove optimal randomized lower bounds for lopsided set disjointness.
Alternation and Redundancy Analysis of the Intersection Problem
"... The intersection of sorted arrays problem has applications in search engines such as Google. Previous work propose and compare deterministic algorithms for this problem, in an adaptive analysis based on the encoding size of a certificate of the result (cost analysis). We define the alternation analy ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
The intersection of sorted arrays problem has applications in search engines such as Google. Previous work propose and compare deterministic algorithms for this problem, in an adaptive analysis based on the encoding size of a certificate of the result (cost analysis). We define the alternation analysis, based on the nondeterministic complexity of an instance. In this analysis we prove that there is a deterministic algorithm asymptotically performing as well as any randomized algorithm in the comparison model. We define the redundancy analysis, based on a measure of the internal redundancy of the instance. In this analysis we prove that any algorithm optimal in the redundancy analysis is optimal in the alternation analysis, but that there is a randomized algorithm which performs strictly better than any deterministic algorithm in the comparison model. Finally, we describe how those results can be extended beyond the comparison model.