Results 1 
4 of
4
Inference in Hybrid Networks: Theoretical Limits and Practical Algorithms
 In UAI
, 2001
"... An important subclass of hybrid Bayesian networks ..."
Hybrid Bayesian Networks for Reasoning about Complex Systems
, 2002
"... Many realworld systems are naturally modeled as hybrid stochastic processes, i.e., stochastic processes that contain both discrete and continuous variables. Examples include speech recognition, target tracking, and monitoring of physical systems. The task is usually to perform probabilistic inferen ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
Many realworld systems are naturally modeled as hybrid stochastic processes, i.e., stochastic processes that contain both discrete and continuous variables. Examples include speech recognition, target tracking, and monitoring of physical systems. The task is usually to perform probabilistic inference, i.e., infer the hidden state of the system given some noisy observations. For example, we can ask what is the probability that a certain word was pronounced given the readings of our microphone, what is the probability that a submarine is trying to surface given our sonar data, and what is the probability of a valve being open given our pressure and flow readings. Bayesian networks are
Inference and Learning in Hybrid Bayesian Networks
, 1998
"... We survey the literature on methods for inference and learning in Bayesian Networks composed of discrete and continuous nodes, in which the continuous nodes have a multivariate Gaussian distribution, whose mean and variance depends on the values of the discrete nodes. We also briefly consider hybrid ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
We survey the literature on methods for inference and learning in Bayesian Networks composed of discrete and continuous nodes, in which the continuous nodes have a multivariate Gaussian distribution, whose mean and variance depends on the values of the discrete nodes. We also briefly consider hybrid Dynamic Bayesian Networks, an extension of switching Kalman filters. This report is meant to summarize what is known at a sufficient level of detail to enable someone to implement the algorithms, but without dwelling on formalities.
Exact inference in networks with discrete children of continuous parents
 in: J. Breese, D. Koller (Eds.), Uncertainty in Artificial Intelligence
, 2001
"... Many real life domains contain a mixture of discrete and continuous variables and can be modeled as hybrid Bayesian Networks (BNs). An important subclass of hybrid BNs are conditional linear Gaussian (CLG) networks, where the conditional distribution of the continuous variables given an assignment t ..."
Abstract

Cited by 22 (2 self)
 Add to MetaCart
Many real life domains contain a mixture of discrete and continuous variables and can be modeled as hybrid Bayesian Networks (BNs). An important subclass of hybrid BNs are conditional linear Gaussian (CLG) networks, where the conditional distribution of the continuous variables given an assignment to the discrete variables is a multivariate Gaussian. Lauritzen’s extension to the clique tree algorithm can be used for exact inference in CLG networks. However, many domains include discrete variables that depend on continuous ones, and CLG networks do not allow such dependencies to be represented. In this paper, we propose the first “exact ” inference algorithm for augmented CLG networks — CLG networks augmented by allowing discrete children of continuous parents. Our algorithm is based on Lauritzen’s algorithm, and is exact in a similar sense: it computes the exact distributions over the discrete nodes, and the exact first and second moments of the continuous ones, up to inaccuracies resulting from numerical integration used within the algorithm. In the special case of softmax CPDs, we show that integration can often be done efficiently, and that using the first two moments leads to a particularly accurate approximation. We show empirically that our algorithm achieves substantially higher accuracy at lower cost than previous algorithms for this task. 1