Results 21  30
of
101
Radial Level Planarity Testing and Embedding in Linear Time
 Journal of Graph Algorithms and Applications
, 2005
"... A graph with a given partition of the vertices on k concentric circles is radial level planar if there is a vertex permutation such that the edges can be routed strictly outwards without crossings. Radial level planarity extends level planarity, where the vertices are placed on k horizontal lines an ..."
Abstract

Cited by 19 (9 self)
 Add to MetaCart
A graph with a given partition of the vertices on k concentric circles is radial level planar if there is a vertex permutation such that the edges can be routed strictly outwards without crossings. Radial level planarity extends level planarity, where the vertices are placed on k horizontal lines and the edges are routed strictly downwards without crossings. The extension is characterised by rings, which are level nonplanar biconnected components. Our main results are linear time algorithms for radial level planarity testing and for computing an embedding. We introduce PQRtrees as a new data structure where Rnodes and associated templates for their manipulation are introduced to deal with rings. Our algorithms extend level planarity testing and embedding algorithms which use PQtrees.
Dynamic and I/OEfficient Algorithms for Computational Geometry and Graph Problems: Theoretical and Experimental Results
, 1995
"... As most important applications today are largescale in nature, highperformance methods are becoming indispensable. Two promising computational paradigms for largescale applications are dynamic and I/Oefficient computations. We give efficient dynamic data structures for several fundamental proble ..."
Abstract

Cited by 18 (4 self)
 Add to MetaCart
As most important applications today are largescale in nature, highperformance methods are becoming indispensable. Two promising computational paradigms for largescale applications are dynamic and I/Oefficient computations. We give efficient dynamic data structures for several fundamental problems in computational geometry, including point location, ray shooting, shortest path, and minimumlink path. We also develop a collection of new techniques for designing and analyzing I/Oefficient algorithms for graph problems, and illustrate how these techniques can be applied to a wide variety of specific problems, including list ranking, Euler tour, expressiontree evaluation, leastcommon ancestors, connected and biconnected components, minimum spanning forest, ear decomposition, topological sorting, reachability, graph drawing, and visibility representation. Finally, we present an extensive experimental study comparing the practical I/O efficiency of four algorithms for the orthogonal s...
Inserting an Edge Into a Planar Graph
 Algorithmica
, 2000
"... Computing a crossing minimum drawing of a given planar graph G augmented by an additional edge e in which all crossings involve e, has been a long standing open problem in graph drawing. Alternatively, the problem can be stated as finding a planar combinatorial embedding of a planar graph G in which ..."
Abstract

Cited by 18 (9 self)
 Add to MetaCart
Computing a crossing minimum drawing of a given planar graph G augmented by an additional edge e in which all crossings involve e, has been a long standing open problem in graph drawing. Alternatively, the problem can be stated as finding a planar combinatorial embedding of a planar graph G in which the given edge e can be inserted with the minimum number of crossings. Many problems concerned with the optimization over the set of all combinatorial embeddings of a planar graph turned out to be NPhard. Surprisingly, we found a conceptually simple linear time algorithm based on SPQRtrees, which is able to find a crossing minimum solution.
An O(m log n)Time Algorithm for the Maximal Planar Subgraph Problem
, 1993
"... Based on a new version of Hopcroft and Tarjan's planarity testing algorithm, we develop an O (mlogn)time algorithm to find a maximal planar subgraph. Key words. algorithm, complexity, depthfirstsearch, embedding, planar graph, selection tree AMS(MOS) subject classifications. 68R10, 68Q35, 94C1 ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
Based on a new version of Hopcroft and Tarjan's planarity testing algorithm, we develop an O (mlogn)time algorithm to find a maximal planar subgraph. Key words. algorithm, complexity, depthfirstsearch, embedding, planar graph, selection tree AMS(MOS) subject classifications. 68R10, 68Q35, 94C15 1. Introduction In [15], Wu defined the problem of planar graphs in terms of the following four subproblems: ################## 1 This work was partly supported by ThomsonCSF/DSE and by the National Science Foundation under grant CCR9002428. 2. Research at Princeton University partially supported by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, grant NSFSTC8809648, and the Office of Naval Research, contract N0001487K0467.    2  P1. Decide whether a connected graph G is planar. P2. Find a minimal set of edges the removal of which will render the remaining part of G planar. P3. Gi...
A Linear Algorithm for Analysis of Minimum Spanning and Shortest Path Trees of Planar Graphs
 Algorithmica
, 1992
"... We give a linear time and space algorithm for analyzing trees in planar graphs. The algorithm can be used to analyze the sensitivity of a minimum spanning tree to changes in edge costs, to find its replacement edges, and to verify its minimality. It can also be used to analyze the sensitivity of a s ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
We give a linear time and space algorithm for analyzing trees in planar graphs. The algorithm can be used to analyze the sensitivity of a minimum spanning tree to changes in edge costs, to find its replacement edges, and to verify its minimality. It can also be used to analyze the sensitivity of a singlesource shortest path tree to changes in edge costs, and to analyze the sensitivity of a minimum cost network flow. The algorithm is simple and practical. It uses the properties of a planar embedding, combined with a heapordered queue data structure. Let G = (V; E) be a planar graph, either directed or undirected, with n vertices and m = O(n) edges. Each edge e 2 E has a realvalued cost cost(e). A minimum spanning tree of a connected, undirected planar graph G is a spanning tree of minimum total edge cost. If G is directed and r is a vertex from which all other vertices are reachable, then a shortest path tree from r is a spanning tree that contains a minimumcost path from r to every...
Upward Planar Drawing of Single Source Acyclic Digraphs
, 1990
"... A upward plane drawing of a directed acyclic graph is a straight line drawing in the Euclidean plane such that all directed arcs point upwards. Thomassen [30] has given a nonalgorithmic, graphtheoretic characterization of those directed graphs with a single source that admit an upward drawing. We ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
A upward plane drawing of a directed acyclic graph is a straight line drawing in the Euclidean plane such that all directed arcs point upwards. Thomassen [30] has given a nonalgorithmic, graphtheoretic characterization of those directed graphs with a single source that admit an upward drawing. We present an efficient algorithm to test whether a given singlesource acyclic digraph has a plane upward drawing and, if so, to find a representation of one such drawing. The algorithm decomposes the graph into biconnected and triconnected components, and defines conditions for merging the components into an upward drawing of the original graph. For the triconnected components we provide a linear algorithm to test whether a given plane representation admits an upward drawing with the same faces and outer face, which also gives a simpler (and algorithmic) proof of Thomassen's result. The entire testing algorithm (for general single source directed acyclic graphs) operates in O(n²) time and...
Determinant algorithms for random planar structures
 In Proc. of the Eighth Annual ACMSIAM Symposium on Discrete Algorithms
, 1997
"... ..."
Randomized Graph Drawing with HeavyDuty Preprocessing
 In: AVI ’94: Proceedings of the Workshop on Advanced Visual Interfaces
, 1994
"... : We present a graph drawing system for general undirected graphs with straightline edges. It carries out a rather complex set of preprocessing steps, designed to produce a topologically good, but not necessarily nicelooking layout, which is then subjected to Davidson and Harel's simulated anneali ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
: We present a graph drawing system for general undirected graphs with straightline edges. It carries out a rather complex set of preprocessing steps, designed to produce a topologically good, but not necessarily nicelooking layout, which is then subjected to Davidson and Harel's simulated annealing beautification algorithm. The intermediate layout is planar for planar graphs and attempts to come close to planar for nonplanar graphs. The system's results are significantly better, and much faster, than what the annealing approach is able to achieve on its own. 1 Introduction A large amount of work on the problem of graph layout has been carried out in recent years, resulting in a number of sophisticated and powerful algorithms. An extensive and detailed survey can be found in [BETT93]. Many of the approaches taken are limited to special cases of graphs, such as trees or planar graphs; others concentrate on special kinds of layouts, such as rectilinear grid drawings, or convex drawin...
Treedecompositions with bags of small diameter
, 2007
"... This paper deals with the length of a Robertson–Seymour’s treedecomposition. The treelength of a graph is the largest distance between two vertices of a bag of a treedecomposition, minimized over all treedecompositions of the graph. The study of this invariant may be interesting in its own right ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
This paper deals with the length of a Robertson–Seymour’s treedecomposition. The treelength of a graph is the largest distance between two vertices of a bag of a treedecomposition, minimized over all treedecompositions of the graph. The study of this invariant may be interesting in its own right because the class of bounded treelength graphs includes (but is not reduced to) bounded chordality graphs (like interval graphs, permutation graphs, ATfree graphs, etc.). For instance, we show that the treelength of any outerplanar graph is ⌈k/3⌉, where k is the chordality of the graph, and we compute the treelength of meshes. More fundamentally we show that any algorithm computing a treedecomposition approximating the treewidth (or the treelength) of an nvertex graph by a factor α or less does not give an αapproximation of the treelength (resp. the treewidth) unless if α = Ω(n 1/5). We complete these results presenting several polynomial time constant approximate algorithms for the treelength. The introduction of this parameter is motivated by the design of compact distance labeling, compact routing tables with nearoptimal route length, and by the construction of sparse additive spanners.
An Algorithm for StraightLine Drawing of Planar Graphs
, 1995
"... Abstract. We present a new algorithm for drawing planar graphs on the plane. It can be viewed as a generalization of the algorithm of Chrobak and Payne, which, in turn, is based on an algorithm by de Fraysseix, Pach, and Pollack. Our algorithm improves the previous ones in that it does not require a ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
Abstract. We present a new algorithm for drawing planar graphs on the plane. It can be viewed as a generalization of the algorithm of Chrobak and Payne, which, in turn, is based on an algorithm by de Fraysseix, Pach, and Pollack. Our algorithm improves the previous ones in that it does not require a preliminary triangulation step; triangulation proves problematic in drawing graphs “nicely, ” as it has the tendency to ruin the structure of the input graph. The new algorithm retains the positive features of the previous algorithms: it embeds a biconnected graph of n vertices on a grid of size (2n − 4) × (n − 2) in linear time. We have implemented the algorithm as part of a software system for drawing graphs nicely. Key Words.