Results 1  10
of
115
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows: ffl We devise a model for dynamic graph algorithms, based on performing queries and updates on an implicit representation of the drawing, and we show its applications. ffl We present several efficient dynamic drawing algorithms for trees, seriesparallel digraphs, planar stdigraphs, and planar graphs. These algorithms adopt a variety of representations (e.g., straightline, polyline, visibility), and update the drawing in a smooth way.
Appearancepreserving simplification
 IN PROC. SIGGRAPH’98
, 1998
"... We present a new algorithm for appearancepreserving simplification. Not only does it generate a lowpolygoncount approximation of a model, but it also preserves the appearance. This is accomplished for a particular display resolution in the sense that we properly sample the surface position, curva ..."
Abstract

Cited by 153 (9 self)
 Add to MetaCart
(Show Context)
We present a new algorithm for appearancepreserving simplification. Not only does it generate a lowpolygoncount approximation of a model, but it also preserves the appearance. This is accomplished for a particular display resolution in the sense that we properly sample the surface position, curvature, and color attributes of the input surface. We convert the input surface to a representation that decouples the sampling of these three attributes, storing the colors and normals in texture and normal maps, respectively. Our simplification algorithm employs a new texture deviation metric, which guarantees that these maps shift by no more than a userspecified number of pixels on the screen. The simplification process filters the surface position, while the runtime system filters the colors and normals on a perpixel basis. We have applied our simplification technique to several large models achieving significant amounts of simplification with little or no loss in rendering quality.
A Better Heuristic for Orthogonal Graph Drawings
 COMPUT. GEOM. THEORY APPL
, 1998
"... An orthogonal drawing of a graph is an embedding in the plane such that all edges are drawn as sequences of horizontal and vertical segments. We present a linear time and space algorithm to draw any connected graph orthogonally on a grid of size n \Theta n with at most 2n + 2 bends. Each edge is ben ..."
Abstract

Cited by 81 (6 self)
 Add to MetaCart
An orthogonal drawing of a graph is an embedding in the plane such that all edges are drawn as sequences of horizontal and vertical segments. We present a linear time and space algorithm to draw any connected graph orthogonally on a grid of size n \Theta n with at most 2n + 2 bends. Each edge is bent at most twice. In particular for nonplanar and nonbiconnected planar graphs, this is a big improvement. The algorithm is very simple, easy to implement, and it handles both planar and nonplanar graphs at the same time.
Drawing Planar Graphs Using the Canonical Ordering
 ALGORITHMICA
, 1996
"... We introduce a new method to optimize the required area, minimum angle and number of bends of planar drawings of graphs on a grid. The main tool is a new type of ordering on the vertices and faces of triconnected planar graphs. Using this method linear time and space algorithms can be designed for m ..."
Abstract

Cited by 78 (0 self)
 Add to MetaCart
We introduce a new method to optimize the required area, minimum angle and number of bends of planar drawings of graphs on a grid. The main tool is a new type of ordering on the vertices and faces of triconnected planar graphs. Using this method linear time and space algorithms can be designed for many graph drawing problems.  Every triconnected planar graph G can be drawn convexly with straight lines on an (2n \Gamma 4) \Theta (n \Gamma 2) grid, where n is the number of vertices.  Every triconnected planar graph with maximum degree four can be drawn orthogonally on an n \Theta n grid with at most d 3n 2 e + 4, and if n ? 6 then every edge has at most two bends.  Every 3planar graph G can be drawn with at most b n 2 c + 1 bends on an b n 2 c \Theta b n 2 c grid.  Every triconnected planar graph G can be drawn planar on an (2n \Gamma 6) \Theta (3n \Gamma 9) grid with minimum angle larger than 2 d radians and at most 5n \Gamma 15 bends, with d the maximum d...
Confluent drawings: Visualizing NonPlanar Diagrams in a Planar Way
 GRAPH DRAWING (PROC. GD ’03), VOLUME 2912 OF LECTURE NOTES COMPUT. SCI
, 2003
"... We introduce a new approach for drawing diagrams. Our approach is to use a technique we call confluent drawing for visualizing nonplanar graphs in a planar way. This approach allows us to draw, in a crossingfree manner, graphs—such as software interaction diagrams—that would normally have many cro ..."
Abstract

Cited by 53 (9 self)
 Add to MetaCart
We introduce a new approach for drawing diagrams. Our approach is to use a technique we call confluent drawing for visualizing nonplanar graphs in a planar way. This approach allows us to draw, in a crossingfree manner, graphs—such as software interaction diagrams—that would normally have many crossings. The main idea of this approach is quite simple: we allow groups of edges to be merged together and drawn as “tracks” (similar to train tracks). Producing such confluent drawings automatically from a graph with many crossings is quite challenging, however, we offer a heuristic algorithm (one version for undirected graphs and one version for directed ones) to test if a nonplanar graph can be drawn efficiently in a confluent way. In addition, we identify several large classes of graphs that can be completely categorized as being either confluently drawable or confluently nondrawable.
On the cutting edge: Simplified O(n) planarity by edge addition
 Journal of Graph Algorithms and Applications
, 2004
"... www.cs.uvic.ca/˜wendym ..."
ONLINE PLANARITY TESTING
, 1996
"... The online planaritytesting problem consists of performing the following operations on a planar graph G: (i) testing if a new edge can be added to G so that the resulting graph is itself planar; (ii) adding vertices and edges such that planarity is preserved. An efficient technique for online plan ..."
Abstract

Cited by 39 (5 self)
 Add to MetaCart
The online planaritytesting problem consists of performing the following operations on a planar graph G: (i) testing if a new edge can be added to G so that the resulting graph is itself planar; (ii) adding vertices and edges such that planarity is preserved. An efficient technique for online planarity testing of a graph is presented that uses O(n) space and supports tests and insertions of vertices and edges in O(log n) time, where n is the current number of vertices of G. The bounds for tests and vertex insertions are worstcase and the bound for edge insertions is amortized. We also present other applications of this technique to dynamic algorithms for planar graphs.
On the Embedding Phase of the Hopcroft and Tarjan Planarity Testing Algorithm
 ALGORITHMICA
, 1994
"... We give a detailed description of the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. The embedding phase runs in linear time. An implementation based on this paper can be found in [MMN93]. ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
We give a detailed description of the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. The embedding phase runs in linear time. An implementation based on this paper can be found in [MMN93].