Results 1 
7 of
7
Optimal Coding and Sampling of Triangulations
, 2003
"... Abstract. We present a simple encoding of plane triangulations (aka. maximal planar graphs) by plane trees with two leaves per inner node. Our encoding is a bijection taking advantage of the minimal Schnyder tree decomposition of a plane triangulation. Coding and decoding take linear time. As a bypr ..."
Abstract

Cited by 39 (5 self)
 Add to MetaCart
Abstract. We present a simple encoding of plane triangulations (aka. maximal planar graphs) by plane trees with two leaves per inner node. Our encoding is a bijection taking advantage of the minimal Schnyder tree decomposition of a plane triangulation. Coding and decoding take linear time. As a byproduct we derive: (i) a simple interpretation of the formula for the number of plane triangulations with n vertices, (ii) a linear random sampling algorithm, (iii) an explicit and simple information theory optimal encoding. 1
Uniform Random Generation of Decomposable Structures Using FloatingPoint Arithmetic
 THEORETICAL COMPUTER SCIENCE
, 1997
"... The recursive method formalized by Nijenhuis and Wilf [15] and systematized by Flajolet, Van Cutsem and Zimmermann [8], is extended here to floatingpoint arithmetic. The resulting ADZ method enables one to generate decomposable data structures  both labelled or unlabelled  uniformly at random, ..."
Abstract

Cited by 30 (2 self)
 Add to MetaCart
The recursive method formalized by Nijenhuis and Wilf [15] and systematized by Flajolet, Van Cutsem and Zimmermann [8], is extended here to floatingpoint arithmetic. The resulting ADZ method enables one to generate decomposable data structures  both labelled or unlabelled  uniformly at random, in expected O(n 1+ffl ) time and space, after a preprocessing phase of O(n 2+ffl ) time, which reduces to O(n 1+ffl ) for contextfree grammars.
An InformationTheoretic Upper Bound of Planar Graphs Using Triangulation
, 2003
"... We propose a new linear time algorithm to represent a planar graph. Based on a specific triangulation of the graph, our coding takes on average 5.03 bits per node, and 3.37 bits per node if the graph is maximal. We derive from this representation that the number of unlabeled planar graphs with n ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
We propose a new linear time algorithm to represent a planar graph. Based on a specific triangulation of the graph, our coding takes on average 5.03 bits per node, and 3.37 bits per node if the graph is maximal. We derive from this representation that the number of unlabeled planar graphs with n nodes is at most 2 n+O(log n) where 5.007. The current lower bound is 2 n+(log n) for 4.71. We also show that almost all unlabeled and almost all labeled nnode planar graphs have at least 1.70n edges and at most 2.54n edges.
Canonical Decomposition of Outerplanar Maps and Application to Enumeration, Coding and Generation
, 2003
"... In this article we define a canonical decomposition of rooted outerplanar maps into a spanning tree and a list of edges. This decomposition, constructible in linear time, implies the existence of bijection between rooted outerplanar maps with n nodes and bicolored rooted ordered trees with n node ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
In this article we define a canonical decomposition of rooted outerplanar maps into a spanning tree and a list of edges. This decomposition, constructible in linear time, implies the existence of bijection between rooted outerplanar maps with n nodes and bicolored rooted ordered trees with n nodes where all the nodes of the last branch are colored white. As a consequence, for rooted outerplanar maps of n nodes, we derive: an enumeration formula, and an asymptotic of 2 3n (log n) ; an optimal data structure of asymptotically 3n bits, built in O(n) time, supporting adjacency and degree queries in worstcase constant time and neighbors query of a ddegree node in worstcase O(d) time...
An Information Upper Bound of Planar Graphs Using Triangulation
, 2002
"... We propose a new linear time algorithm to represent a planar graph. Based on a specific triangulation of the graph, our coding takes on average 5.03 bits per node, and 3.37 bits per node if the graph is maximal. We derive from this representation that the number of unlabeled planar graphs with n ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
We propose a new linear time algorithm to represent a planar graph. Based on a specific triangulation of the graph, our coding takes on average 5.03 bits per node, and 3.37 bits per node if the graph is maximal. We derive from this representation that the number of unlabeled planar graphs with n nodes is at most 2 n+O(log n) , where 5.007. The current lower
A Note On Remy's Algorithm For Generating Random Binary Trees
, 2000
"... This note discusses the implementation of Rémy's algorithm for generating unbiased random binary trees. We point out an error in a published implementation of the algorithm. The error is found by using the 2 test. Moreover, a correct implementation of the algorithm is presented. ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
This note discusses the implementation of Rémy's algorithm for generating unbiased random binary trees. We point out an error in a published implementation of the algorithm. The error is found by using the 2 test. Moreover, a correct implementation of the algorithm is presented.
Uniform Random Generation of . . .
, 1997
"... The recursive method formalized by Nijenhuis and Wilf [15] and systematized by Flajolet, Van Cutsem and Zimmermann [8], is extended here to floatingpoint arithmetic. The resulting ADZ method enables one to generate decomposable data structures  both labelled or unlabelled  uniformly at random ..."
Abstract
 Add to MetaCart
The recursive method formalized by Nijenhuis and Wilf [15] and systematized by Flajolet, Van Cutsem and Zimmermann [8], is extended here to floatingpoint arithmetic. The resulting ADZ method enables one to generate decomposable data structures  both labelled or unlabelled  uniformly at random, in expected O#n # time and space, after a preprocessing phase of O#n # time, which reduces to O#n # for contextfree grammars.