Results 1  10
of
99
The Computation of Optical Flow
, 1995
"... Twodimensional image motion is the projection of the threedimensional motion of objects, relative to a visual sensor, onto its image plane. Sequences of timeordered images allow the estimation of projected twodimensional image motion as either instantaneous image velocities or discrete image dis ..."
Abstract

Cited by 224 (10 self)
 Add to MetaCart
Twodimensional image motion is the projection of the threedimensional motion of objects, relative to a visual sensor, onto its image plane. Sequences of timeordered images allow the estimation of projected twodimensional image motion as either instantaneous image velocities or discrete image displacements. These are usually called the optical flow field or the image velocity field. Provided that optical flow is a reliable approximation to twodimensional image motion, it may then be used to recover the threedimensional motion of the visual sensor (to within a scale factor) and the threedimensional surface structure (shape or relative depth) through assumptions concerning the structure of the optical flow field, the threedimensional environment and the motion of the sensor. Optical flow may also be used to perform motion detection, object segmentation, timetocollision and focus of expansion calculations, motion compensated encoding and stereo disparity measurement. We investiga...
Smoothness in Layers: Motion segmentation using nonparametric mixture estimation
, 1997
"... Grouping based on common motion, or "common fate" provides a powerful cue for segmenting image sequences. Recently a number of algorithms have been developed that successfully perform motion segmentation by assuming that the motion of each group can be described by a low dimensional parame ..."
Abstract

Cited by 161 (5 self)
 Add to MetaCart
Grouping based on common motion, or "common fate" provides a powerful cue for segmenting image sequences. Recently a number of algorithms have been developed that successfully perform motion segmentation by assuming that the motion of each group can be described by a low dimensional parametric model (e.g. affine). Typically the assumption is that motion segments correspond to planar patches in 3D undergoing rigid motion. Here we develop an alternative approach, where the motion of each group is described by a smooth dense flow field and the stability of the estimation is ensured by means of a prior distribution on the class of flow fields. We present a variant of the EM algorithm that can segment image sequences by fitting multiple smooth flow fields to the spatiotemporal data. Using the method of Green's functions, we show how the estimation of a single smooth flow field can be performed in closed form, thus making the multiple model estimation computationally feasible. Furthermore, t...
Multiresolution markov models for signal and image processing
 Proceedings of the IEEE
, 2002
"... This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coheren ..."
Abstract

Cited by 121 (17 self)
 Add to MetaCart
This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coherent picture of this framework. A second goal is to describe how this topic fits into the even larger field of MR methods and concepts–in particular making ties to topics such as wavelets and multigrid methods. A third is to provide several alternate viewpoints for this body of work, as the methods and concepts we describe intersect with a number of other fields. The principle focus of our presentation is the class of MR Markov processes defined on pyramidally organized trees. The attractiveness of these models stems from both the very efficient algorithms they admit and their expressive power and broad applicability. We show how a variety of methods and models relate to this framework including models for selfsimilar and 1/f processes. We also illustrate how these methods have been used in practice. We discuss the construction of MR models on trees and show how questions that arise in this context make contact with wavelets, state space modeling of time series, system and parameter identification, and hidden
Random Cascades on Wavelet Trees and Their Use in Analyzing and Modeling Natural Images
 Applied and Computational Harmonic Analysis
, 2001
"... in signal and image processing, including image denoising, coding, and superresolution. # 2001 Academic Press 1. INTRODUCTION Stochastic models of natural images underlie a variety of applications in image processing and lowlevel computer vision, including image coding, denoising and 1 MW supp ..."
Abstract

Cited by 88 (15 self)
 Add to MetaCart
in signal and image processing, including image denoising, coding, and superresolution. # 2001 Academic Press 1. INTRODUCTION Stochastic models of natural images underlie a variety of applications in image processing and lowlevel computer vision, including image coding, denoising and 1 MW supported by NSERC 1967 fellowship; AW and MW by AFOSR Grant F496209810349 and ONR Grant N0001491J1004. Address correspondence to MW. 2 ES supported by NSF Career Grant MIP9796040 and an Alfred P. Sloan fellowship. 89 10635203/01 $35.00 Copyright # 2001 by Academic Press All rights of reproduction in any form reserved. 90 WAINWRIGHT, SIMONCELLI, AND WILLSKY restoration, interpolation and synthesis. Accordingly, the past decade has witnessed an increasing amount of research devoted to developing stochastic models of images (e.g., [19, 38, 45, 48, 55]). Simultaneously, wavel
Multiscale Representations of Markov Random Fields
 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL 41. NO 12. DECEMBER 1993
, 1993
"... Recently, a framework for multiscale stochastic modeling was introduced based on coarsetofine scalerecursive dynamics defined on trees. This model class has some attractive characteristics which lead to extremely efficient, statistically optimal signal and image processing algorithms. In this pap ..."
Abstract

Cited by 86 (26 self)
 Add to MetaCart
Recently, a framework for multiscale stochastic modeling was introduced based on coarsetofine scalerecursive dynamics defined on trees. This model class has some attractive characteristics which lead to extremely efficient, statistically optimal signal and image processing algorithms. In this paper, we show that this model class is also quite rich. In particular, we describe how 1D Markov processes and 2D Markov random fields (MRF’s) can be represented within this framework. The recursive structure of 1D Markov processes makes them simple to analyze, and generally leads to computationally efficient algorithms for statistical inference. On the other hand, 2D MRF’s are well known to be very difficult to analyze due to their noncausal structure, and thus their use typically leads to computationally intensive algorithms for smoothing and parameter identification. In contrast, our multiscale representations are based on scalerecursive models and thus lead naturally to scalerecursive algorithms, which can be substantially more efficient computationally than those associated with MRF models. In 1D, the multiscale representation is a generalization of the midpoint deflection construction of Brownian motion. The representation of 2D MRF’s is based on a further generalization to a “midline ” deflection construction. The exact representations of 2D MRF’s are used to motivate a class of multiscale approximate MRF models based on onedimensional wavelet transforms. We demonstrate the use of these latter models in the context of texture representation and, in particular, we show how they can be used as approximations for or alternatives to wellknown MRF texture models.
Likelihood calculation for a class of multiscale stochastic models, with application to texture discrimination
 IEEE Transactions on Image Processing
, 1995
"... Abstruct A class of multiscale stochastic models based on scalerecursive dynamics on trees has recently been introduced. Theoretical and experimental results have shown that these models provide an extremely rich framework for representing both processes which are intrinsically multiscale, e.g., l ..."
Abstract

Cited by 59 (20 self)
 Add to MetaCart
Abstruct A class of multiscale stochastic models based on scalerecursive dynamics on trees has recently been introduced. Theoretical and experimental results have shown that these models provide an extremely rich framework for representing both processes which are intrinsically multiscale, e.g., llf processes, as well as 1D Markov processes and 2D Markov random fields. Moreover, efficient optimal estimation algorithms have been developed for these models by exploiting their scalerecursive structure. In this paper, we exploit this structure in order to develop a computationally efficient and parallelizable algorithm for likelihood calculation. We illustrate one possible application to texture discrimination and demonstrate that likelihoodbased methods using our algorithm achieve performance comparable to that of Gaussian Markov random field based techniques, which in general are prohibitively complex computationally. I.
Motion Estimation with Quadtree Splines
, 1995
"... This paper presents a motion estimation algorithm based on a new multiresolution representation, the quadtree spline. This representation describes the motion field as a collection of smoothly connected patches of varying size, where the patch size is automatically adapted to the complexity of the u ..."
Abstract

Cited by 55 (3 self)
 Add to MetaCart
This paper presents a motion estimation algorithm based on a new multiresolution representation, the quadtree spline. This representation describes the motion field as a collection of smoothly connected patches of varying size, where the patch size is automatically adapted to the complexity of the underlying motion. The topology of the patches is determined by a quadtree data structure, and both split and merge techniques are developed for estimating this spatial subdivision. The quadtree spline is implemented using another novel representation, the adaptive hierarchical basis spline, and combines the advantages of adaptivelysized correlation windows with the speedups obtained with hierarchical basis preconditioners. Results are presented on some standard motion sequences.
A multigrid platform for realtime motion computation with discontinuitypreserving variational methods
 International Journal of Computer Vision
, 2006
"... Abstract. Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such ad ..."
Abstract

Cited by 44 (13 self)
 Add to MetaCart
Abstract. Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for realtime performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that realtime performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude.
Beyond independent components: trees and clusters
 Journal of Machine Learning Research
, 2003
"... We present a generalization of independent component analysis (ICA), where instead of looking for a linear transform that makes the data components independent, we look for a transform that makes the data components well fit by a treestructured graphical model. This treedependent component analysi ..."
Abstract

Cited by 43 (0 self)
 Add to MetaCart
We present a generalization of independent component analysis (ICA), where instead of looking for a linear transform that makes the data components independent, we look for a transform that makes the data components well fit by a treestructured graphical model. This treedependent component analysis (TCA) provides a tractable and flexible approach to weakening the assumption of independence in ICA. In particular, TCA allows the underlying graph to have multiple connected components, and thus the method is able to find “clusters ” of components such that components are dependent within a cluster and independent between clusters. Finally, we make use of a notion of graphical models for time series due to Brillinger (1996) to extend these ideas to the temporal setting. In particular, we are able to fit models that incorporate treestructured dependencies among multiple time series.
Interpreting images by propagating Bayesian beliefs
 Advances in Neural Information Processing Systems 9
, 1996
"... A central theme of computational vision research has been the realization that reliable estimation of local scene properties requires propagating measurements across the image. Many authors have therefore suggested solving vision problems using architectures of locally connected units updating their ..."
Abstract

Cited by 43 (4 self)
 Add to MetaCart
A central theme of computational vision research has been the realization that reliable estimation of local scene properties requires propagating measurements across the image. Many authors have therefore suggested solving vision problems using architectures of locally connected units updating their activity in parallel. Unfortunately, the convergence of traditional relaxation methods on such architectures has proven to be excruciatingly slow and in general they do not guarantee that the stable point will be a global minimum. In this paper we show that an architecture in which Bayesian Beliefs about image properties are propagated between neighboring units yields convergence times which are several orders of magnitude faster than traditional methods and avoids local minima. In particular our architecture is noniterative in the sense of Marr [5]: at every time step, the local estimates at a given location are optimal given the information which has already been propagated to that loc...