Results 1 
5 of
5
Invitation to FixedParameter Algorithms
, 2002
"... Contents 1. Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Keep the Parameter Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Preliminaries and Agreements . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..."
Abstract

Cited by 302 (69 self)
 Add to MetaCart
Contents 1. Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Keep the Parameter Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Preliminaries and Agreements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Parameterized Complexitya Brief Overview . . . . . . . . . . . . . . 6 1.3.1 Basic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 Interpreting FixedParameter Tractability . . . . . . . . . . . 9 1.4 Vertex Cover  an Illustrative Example . . . . . . . . . . . . . . . . . 11 1.4.1 Parameterize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.2 Specialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.3 Generalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.4 Count or Enumerate . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Graph separators: a parameterized view
 Journal of Computer and System Sciences
, 2001
"... Graph separation is a wellknown tool to make (hard) graph problems accessible to a divide and conquer approach. We show how to use graph separator theorems in combination with (linear) problem kernels in order to develop xed parameter algorithms for many wellknown NPhard (planar) graph problems. ..."
Abstract

Cited by 30 (13 self)
 Add to MetaCart
Graph separation is a wellknown tool to make (hard) graph problems accessible to a divide and conquer approach. We show how to use graph separator theorems in combination with (linear) problem kernels in order to develop xed parameter algorithms for many wellknown NPhard (planar) graph problems. We coin the key notion of glueable select&verify graph problems and derive from that a prospective way to easily check whether a planar graph problem will allow for a xed parameter algorithm of running time c p
Planarization of Graphs Embedded on Surfaces
 in WG
, 1995
"... A planarizing set of a graph is a set of edges or vertices whose removal leaves a planar graph. It is shown that, if G is an nvertex graph of maximum degree d and orientable genus g, then there exists a planarizing set of O( p dgn) edges. This result is tight within a constant factor. Similar res ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
(Show Context)
A planarizing set of a graph is a set of edges or vertices whose removal leaves a planar graph. It is shown that, if G is an nvertex graph of maximum degree d and orientable genus g, then there exists a planarizing set of O( p dgn) edges. This result is tight within a constant factor. Similar results are obtained for planarizing vertex sets and for graphs embedded on nonorientable surfaces. Planarizing edge and vertex sets can be found in O(n + g) time, if an embedding of G on a surface of genus g is given. We also construct an approximation algorithm that finds an O( p gn log g) planarizing vertex set of G in O(n log g) time if no genusg embedding is given as an input. 1 Introduction A graph G is planar if G can be drawn in the plane so that no two edges intersect. Planar graphs arise naturally in many applications of graph theory, e.g. in VLSI and circuit design, in network design and analysis, in computer graphics, and is one of the most intensively studied class of graphs [2...