Results 1  10
of
23
Circuit Complexity before the Dawn of the New Millennium
, 1997
"... The 1980's saw rapid and exciting development of techniques for proving lower bounds in circuit complexity. This pace has slowed recently, and there has even been work indicating that quite different proof techniques must be employed to advance beyond the current frontier of circuit lower bound ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
The 1980's saw rapid and exciting development of techniques for proving lower bounds in circuit complexity. This pace has slowed recently, and there has even been work indicating that quite different proof techniques must be employed to advance beyond the current frontier of circuit lower bounds. Although this has engendered pessimism in some quarters, there have in fact been many positive developments in the past few years showing that significant progress is possible on many fronts. This paper is a (necessarily incomplete) survey of the state of circuit complexity as we await the dawn of the new millennium.
The Permanent Requires Large Uniform Threshold Circuits
, 1999
"... We show that the permanent cannot be computed by uniform constantdepth threshold circuits of size T (n) for any function T such that for all k, T (k) (n) = o(2 n ). More generally, we show that any problem that is hard for the complexity class C=P requires circuits of this size (on the unif ..."
Abstract

Cited by 28 (8 self)
 Add to MetaCart
We show that the permanent cannot be computed by uniform constantdepth threshold circuits of size T (n) for any function T such that for all k, T (k) (n) = o(2 n ). More generally, we show that any problem that is hard for the complexity class C=P requires circuits of this size (on the uniform constantdepth threshold circuit model). In particular, this lower bound applies to any problem that is hard for the complexity classes PP or #P.
NonCommutative Arithmetic Circuits: Depth Reduction and Size Lower Bounds
 Theoretical Computer Science
"... We investigate the phenomenon of depthreduction in commutativeand noncommutative arithmetic circuits. We prove that in the commutative setting, uniform semiunbounded arithmetic circuits of logarithmic depth are as powerful as uniform arithmetic circuits of polynomial degree (and unrestricted dept ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
We investigate the phenomenon of depthreduction in commutativeand noncommutative arithmetic circuits. We prove that in the commutative setting, uniform semiunbounded arithmetic circuits of logarithmic depth are as powerful as uniform arithmetic circuits of polynomial degree (and unrestricted depth); earlier proofs did not work in the uniform setting. This also provides a unified proof of the circuit characterizations of the class LOGCFL and its counting variant #LOGCFL. We show that AC 1 has no more power than arithmetic circuits of polynomial size and degree n O(log log n) (improving the trivial bound of n O(logn) ). Connections are drawn between TC 1 and arithmetic circuits of polynomial size and degree. Then we consider noncommutative computation. We show that over the algebra (\Sigma ; max, concat), arithmetic circuits of polynomial size and polynomial degree can be reduced to O(log 2 n) depth (and even to O(log n) depth if unboundedfanin gates are allowed) . This...
A FirstOrder Isomorphism Theorem
 SIAM JOURNAL ON COMPUTING
, 1993
"... We show that for most complexity classes of interest, all sets complete under firstorder projections are isomorphic under firstorder isomorphisms. That is, a very restricted version of the BermanHartmanis Conjecture holds. ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
We show that for most complexity classes of interest, all sets complete under firstorder projections are isomorphic under firstorder isomorphisms. That is, a very restricted version of the BermanHartmanis Conjecture holds.
Separating the Communication Complexities of MOD m and MOD p Circuits
 IN PROC. 33RD IEEE FOCS
, 1995
"... We prove in this paper that it is much harder to evaluate depth2, sizeN circuits with MOD m gates than with MOD p gates by kparty communication protocols: we show a kparty protocol which communicates O(1) bits to evaluate circuits with MOD p gates, while evaluating circuits with MOD m gates ..."
Abstract

Cited by 20 (4 self)
 Add to MetaCart
We prove in this paper that it is much harder to evaluate depth2, sizeN circuits with MOD m gates than with MOD p gates by kparty communication protocols: we show a kparty protocol which communicates O(1) bits to evaluate circuits with MOD p gates, while evaluating circuits with MOD m gates needs\Omega\Gamma N) bits, where p denotes a prime, and m a composite, nonprime power number. As a corollary, for all m, we show a function, computable with a depth2 circuit with MODm gates, but not with any depth2 circuit with MOD p gates. Obviously, the kparty protocols are not weaker than the k 0 party protocols, for k 0 ? k. Our results imply that if there is a prime p between k and k 0 : k ! p k 0 , then there exists a function which can be computed by a k 0 party protocol with a constant number of communicated bits, while any kparty protocol needs linearly many bits of communication. This result gives a hierarchy theorem for multiparty protocols.
Nonuniform ACC circuit lower bounds
, 2010
"... The class ACC consists of circuit families with constant depth over unbounded fanin AND, OR, NOT, and MODm gates, where m> 1 is an arbitrary constant. We prove: • NTIME[2 n] does not have nonuniform ACC circuits of polynomial size. The size lower bound can be slightly strengthened to quasipoly ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
The class ACC consists of circuit families with constant depth over unbounded fanin AND, OR, NOT, and MODm gates, where m> 1 is an arbitrary constant. We prove: • NTIME[2 n] does not have nonuniform ACC circuits of polynomial size. The size lower bound can be slightly strengthened to quasipolynomials and other less natural functions. • ENP, the class of languages recognized in 2O(n) time with an NP oracle, doesn’t have nonuniform ACC circuits of 2no(1) size. The lower bound gives an exponential sizedepth tradeoff: for every d there is a δ> 0 such that ENP doesn’t have depthd ACC circuits of size 2nδ. Previously, it was not known whether EXP NP had depth3 polynomial size circuits made out of only MOD6 gates. The highlevel strategy is to design faster algorithms for the circuit satisfiability problem over ACC circuits, then prove that such algorithms entail the above lower bounds. The algorithm combines known properties of ACC with fast rectangular matrix multiplication and dynamic programming, while the second step requires a subtle strengthening of the author’s prior work [STOC’10]. Supported by the Josef Raviv Memorial Fellowship.
Arithmetic circuits and counting complexity classes
 In Complexity of Computations and Proofs,J.Krajíček, Ed. Quaderni di Matematica
"... Arithmetic circuits are the focus of renewed attention in the complexity theory community. It is easy to list a few of the reasons for the increased interest: • Innovative work by Kabanets and Impagliazzo [KI03] shows that, in ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
Arithmetic circuits are the focus of renewed attention in the complexity theory community. It is easy to list a few of the reasons for the increased interest: • Innovative work by Kabanets and Impagliazzo [KI03] shows that, in
Time, Hardware, and Uniformity
 In Complexity Theory Retrospective II
, 1997
"... We describe three orthogonal complexity measures: parallel time, amount of hardware, and degree of nonuniformity, which together parametrize most complexity classes. We show that the descriptive complexity framework neatly captures these measures using the parameters: quantifier depth, number of var ..."
Abstract

Cited by 16 (3 self)
 Add to MetaCart
We describe three orthogonal complexity measures: parallel time, amount of hardware, and degree of nonuniformity, which together parametrize most complexity classes. We show that the descriptive complexity framework neatly captures these measures using the parameters: quantifier depth, number of variable bits, and type of numeric predicates respectively. A fairly simple picture arises in which the basic questions in complexity theory  solved and unsolved  can be understood as questions about tradeoffs among these three dimensions. 1 Introduction An initial presentation of complexity theory usually makes the implicit assumption that problems, and hence complexity classes, are linearly ordered by "difficulty ". In the Chomsky Hierarchy each new type of automaton can decide more languages, and the Time Hierarchy Theorem tells us adding more time allows a Turing machine to decide more languages. Indeed the word "complexity" is often used (e.g., in the study of algorithms) to mean "wo...
Nondeterministic NC¹ computation
"... We define the counting classes #NC¹, GapNC¹, PNC¹ and C=NC¹. We prove that boolean circuits, algebraic circuits, programs over nondeterministic finite automata, and programs over constant integer matrices yield equivalent definitions of the latter three classes. We investigate closure properties. We ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
We define the counting classes #NC¹, GapNC¹, PNC¹ and C=NC¹. We prove that boolean circuits, algebraic circuits, programs over nondeterministic finite automata, and programs over constant integer matrices yield equivalent definitions of the latter three classes. We investigate closure properties. We observe that #NC¹ ` #L and that C=NC¹ ` L. Then we exploit our finite automaton model and extend the padding techniques used to investigate leaf languages. Finally, we draw some consequences from the resulting body of leaf language characterizations of complexity classes, including the unconditional separation of ACC⁰ from MODPH as well as that of TC⁰ from the counting hierarchy. Moreover we obtain that dlogtimeuniformity and logspaceuniformity for AC⁰ coincide if and only if the polynomial time hierarchy equals PSPACE .
TimeSpace Tradeoffs for Counting NP Solutions Modulo Integers
 In Proceedings of the 22nd IEEE Conference on Computational Complexity
, 2007
"... We prove the first timespace tradeoffs for counting the number of solutions to an NP problem modulo small integers, and also improve upon known timespace tradeoffs for Sat. Let m> 0 be an integer, and define MODmSat to be the problem of determining if a given Boolean formula has exactly km sat ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
We prove the first timespace tradeoffs for counting the number of solutions to an NP problem modulo small integers, and also improve upon known timespace tradeoffs for Sat. Let m> 0 be an integer, and define MODmSat to be the problem of determining if a given Boolean formula has exactly km satisfying assignments, for some integer k. We show for all primes p except for possibly one of them, and for all c < 2cos(π/7) ≈ 1.801, there is a d> 0 such that MODpSat is not solvable in n c time and n d space by general algorithms. That is, there is at most one prime p that does not satisfy the tradeoff. We prove that the same limitation holds for Sat and MOD6Sat, as well as MODmSat for any composite m that is not a prime power. Our main tool is a general method for rapidly simulating deterministic computations with restricted space, by counting the number of solutions to NP predicates modulo integers. The simulation converts an ordinary algorithm into a “canonical ” one that consumes roughly the same amount of time and space, yet canonical algorithms have nice properties suitable for counting.