Results 1 
4 of
4
The Colin de Verdière graph parameter
, 1997
"... In 1990, Y. Colin de Verdière introduced a new graph parameter (G), based on spectral properties of matrices associated with G. He showed that (G) is monotone under taking minors and that planarity of G is characterized by the inequality (G) 3. Recently Lovasz and Schrijver showed that linkless emb ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
In 1990, Y. Colin de Verdière introduced a new graph parameter (G), based on spectral properties of matrices associated with G. He showed that (G) is monotone under taking minors and that planarity of G is characterized by the inequality (G) 3. Recently Lovasz and Schrijver showed that linkless embeddability of G is characterized by the inequality (G) 4. In this paper we give an overview of results on (G) and of techniques to handle it.
Recent Excluded Minor Theorems
 Surveys in Combinatorics, LMS Lecture Note Series
"... We discuss splitter theorems for internally 4connected graphs and for cyclically 5connected cubic graphs, the graph minor theorem, linkless embeddings, Hadwiger's conjecture, Tutte's edge 3coloring conjecture, and Pfaffian orientations of bipartite graphs. ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
We discuss splitter theorems for internally 4connected graphs and for cyclically 5connected cubic graphs, the graph minor theorem, linkless embeddings, Hadwiger's conjecture, Tutte's edge 3coloring conjecture, and Pfaffian orientations of bipartite graphs.
Clique Minors In Graphs And Their Complements
, 2000
"... A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. Let t ≥ 1 be an integer, and let G be a graph on n vertices with no minor isomorphic to Kt+1. Kostochka conjectures that there exists a constant c = c(k) independent of G such that the complement of G h ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. Let t ≥ 1 be an integer, and let G be a graph on n vertices with no minor isomorphic to Kt+1. Kostochka conjectures that there exists a constant c = c(k) independent of G such that the complement of G has a minor isomorphic to Ks, wheres=⌈1 2 (1 + 1/t)n − c⌉. We prove that Kostochka’s conjecture is equivalent to the conjecture of Duchet and Meyniel that every graph with no minor isomorphic to Kt+1 has an independent set of size at least n/t. We deduce that Kostochka’s conjecture holds for all integers t ≤ 5, and that a weaker form with s replaced by s ′ = ⌈ 1 2 (1 + 1/(2t))n − c⌉ holds for all integers t ≥ 1.