Results 1 - 10
of
1,045
Wireless sensor networks: a survey
, 2002
"... This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of fact ..."
Abstract
-
Cited by 2008 (23 self)
- Add to MetaCart
(Show Context)
This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are
ANALYSIS OF WIRELESS SENSOR NETWORKS FOR HABITAT MONITORING
, 2004
"... We provide an in-depth study of applying wireless sensor networks (WSNs) to real-world habitat monitoring. A set of system design requirements were developed that cover the hardware design of the nodes, the sensor network software, protective enclosures, and system architecture to meet the require ..."
Abstract
-
Cited by 1490 (19 self)
- Add to MetaCart
(Show Context)
We provide an in-depth study of applying wireless sensor networks (WSNs) to real-world habitat monitoring. A set of system design requirements were developed that cover the hardware design of the nodes, the sensor network software, protective enclosures, and system architecture to meet the requirements of biologists. In the summer of 2002, 43 nodes were deployed on a small island off the coast of Maine streaming useful live data onto the web. Although researchers anticipate some challenges arising in real-world deployments of WSNs, many problems can only be discovered through experience. We present a set of experiences from a four month long deployment on a remote island. We analyze the environmental and node health data to evaluate system performance. The close integration of WSNs with their environment provides environmental data at densities previously impossible. We show that the sensor data is also useful for predicting system operation and network failures. Based on over one million 2 Polastre et. al. data readings, we analyze the node and network design and develop network reliability profiles and failure models.
Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks
- ACM Wireless Networks Journal
, 2001
"... ..."
(Show Context)
Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures
-
, 2003
"... We consider routing security in wireless sensor networks. Many sensor network routing protocols have been proposed, but none of them have been designed with security as agq1( We propose securitygcur forrouting in sensor networks, show how attacks agacks ad-hoc and peer-to-peer networks can be ..."
Abstract
-
Cited by 827 (3 self)
- Add to MetaCart
We consider routing security in wireless sensor networks. Many sensor network routing protocols have been proposed, but none of them have been designed with security as agq1( We propose securitygcur forrouting in sensor networks, show how attacks agacks ad-hoc and peer-to-peer networks can be adapted into powerful attacks agacks sensor networks, introduce two classes of novel attacks agacks sensor networks----sinkholes and HELLO floods, and analyze the security of all the major sensor networkrouting protocols. We describe crippling attacks against all of them and sug@(5 countermeasures anddesig considerations. This is the first such analysis of secure routing in sensor networks.
Routing Techniques in Wireless Sensor Networks: A Survey
- IEEE WIRELESS COMMUNICATIONS
, 2004
"... Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus, howeve ..."
Abstract
-
Cited by 741 (2 self)
- Add to MetaCart
(Show Context)
Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus, however, has been given to the routing protocols which might differ depending on the application and network architecture. In this paper, we present a survey of the state-of-the-art routing techniques in WSNs. We first outline the design challenges for routing protocols in WSNs followed by a comprehensive survey of different routing techniques. Overall, the routing techniques are classified into three categories based on the underlying network structure: flat, hierarchical, and location-based routing. Furthermore, these protocols can be classified into multipath-based, query-based, negotiation-based, QoS-based, and coherent-based depending on the protocol operation. We study the design tradeoffs between energy and communication overhead savings in every routing paradigm. We also highlight the advantages and performance issues of each routing technique. The paper concludes with possible future research areas.
Understanding packet delivery performance in dense wireless sensor networks
, 2003
"... Wireless sensor networks promise fine-grain monitoring in a wide variety of environments. Many of these environments (e.g., indoor environments or habitats) can be harsh for wireless communication. From a networking perspective, the most basic aspect of wireless communication is the packet delivery ..."
Abstract
-
Cited by 661 (15 self)
- Add to MetaCart
(Show Context)
Wireless sensor networks promise fine-grain monitoring in a wide variety of environments. Many of these environments (e.g., indoor environments or habitats) can be harsh for wireless communication. From a networking perspective, the most basic aspect of wireless communication is the packet delivery performance:the spatio-temporal characteristics of packet loss, and its environmental dependence. These factors will deeply impact the performance of data acquisition from these networks. In this paper, we report on a systematic medium-scale (up to sixty nodes) measurement of packet delivery in three different environments:an indoor office building, a habitat with moderate foliage, and an open parking lot. Our findings have interesting implications for the design and evaluation of routing and medium-access protocols for sensor networks. Categories and Subject Descriptors C.2.1 [Network Architecture and Design]:Wireless communication; C.4 [Performance of Systems]:Performance
HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad Hoc Sensor Networks
- IEEE TRANS. MOBILE COMPUTING
, 2004
"... Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. In this paper, we propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed ..."
Abstract
-
Cited by 590 (1 self)
- Add to MetaCart
Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. In this paper, we propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of the node residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED terminates in Oð1Þ iterations, incurs low message overhead, and achieves fairly uniform cluster head distribution across the network. We prove that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data aggregation.
Range-Free Localization Schemes for Large Scale Sensor Networks
, 2003
"... Wireless Sensor Networks have been proposed for a multitude of location-dependent applications. For such systems, the cost and limitations of hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point-to-point distance estimates. Because coarse accura ..."
Abstract
-
Cited by 525 (8 self)
- Add to MetaCart
Wireless Sensor Networks have been proposed for a multitude of location-dependent applications. For such systems, the cost and limitations of hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point-to-point distance estimates. Because coarse accuracy is sufficient for most sensor network applications, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. In this paper, we present APIT, a novel localization algorithm that is range-free. We show that our APIT scheme performs best when an irregular radio pattern and random node placement are considered, and low communication overhead is desired. We compare our work via extensive simulation, with three state-of-the-art range-free localization schemes to identify the preferable system configurations of each. In addition, we study the effect of location error on routing and tracking performance. We show that routing performance and tracking accuracy are not significantly affected by localization error when the error is less than 0.4 times the communication radio radius.
ASCENT: Adaptive self-configuring sensor networks topologies
, 2004
"... Advances in microsensor and radio technology will enable small but smart sensors to be deployed for a wide range of environmental monitoring applications. The low per-node cost will allow these wireless networks of sensors and actuators to be densely distributed. The nodes in these dense networks w ..."
Abstract
-
Cited by 449 (15 self)
- Add to MetaCart
Advances in microsensor and radio technology will enable small but smart sensors to be deployed for a wide range of environmental monitoring applications. The low per-node cost will allow these wireless networks of sensors and actuators to be densely distributed. The nodes in these dense networks will coordinate to perform the distributed sensing and actuation tasks. Moreover, as described in this paper, the nodes can also coordinate to exploit the redundancy provided by high density so as to extend overall system lifetime. The large number of nodes deployed in these systems will preclude manual configuration, and the environmental dynamics will preclude design-time preconfiguration. Therefore, nodes will have to self-configure to establish a topology that provides communication under stringent energy constraints. ASCENT builds on the notion that, as density increases, only a subset of the nodes are necessary to establish a routing forwarding backbone. In ASCENT, each node assesses its connectivity and adapts its participation in the multihop network topology based on the measured operating region. This paper motivates and describes the ASCENT algorithm and presents analysis, simulation, and experimental measurements. We show that the system achieves linear increase in energy savings as a function of the density and the convergence time required in case of node failures while still providing adequate connectivity.