Results 1  10
of
110
Constructivism and Proof Theory
, 2003
"... Introduction to the constructive point of view in the foundations of mathematics, in
particular intuitionism due to L.E.J. Brouwer, constructive recursive mathematics
due to A.A. Markov, and Bishop’s constructive mathematics. The constructive interpretation
and formalization of logic is described. F ..."
Abstract

Cited by 162 (4 self)
 Add to MetaCart
Introduction to the constructive point of view in the foundations of mathematics, in
particular intuitionism due to L.E.J. Brouwer, constructive recursive mathematics
due to A.A. Markov, and Bishop’s constructive mathematics. The constructive interpretation
and formalization of logic is described. For constructive (intuitionistic)
arithmetic, Kleene’s realizability interpretation is given; this provides an example
of the possibility of a constructive mathematical practice which diverges from classical
mathematics. The crucial notion in intuitionistic analysis, choice sequence, is
briefly described and some principles which are valid for choice sequences are discussed.
The second half of the article deals with some aspects of proof theory, i.e.,
the study of formal proofs as combinatorial objects. Gentzen’s fundamental contributions
are outlined: his introduction of the socalled Gentzen systems which use
sequents instead of formulas and his result on firstorder arithmetic showing that
(suitably formalized) transfinite induction up to the ordinal "0 cannot be proved in
firstorder arithmetic.
The ProofTheory and Semantics of Intuitionistic Modal Logic
, 1994
"... Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpret ..."
Abstract

Cited by 102 (0 self)
 Add to MetaCart
Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpreted in an intuitionistic metatheory then the induced modal logics no longer satisfy certain intuitionistically invalid principles. This thesis investigates the intuitionistic modal logics that arise in this way. Natural deduction systems for various intuitionistic modal logics are presented. From one point of view, these systems are selfjustifying in that a possible world interpretation of the modalities can be read off directly from the inference rules. A technical justification is given by the faithfulness of translations into intuitionistic firstorder logic. It is also established that, in many cases, the natural deduction systems induce wellknown intuitionistic modal logics, previously given by Hilbertstyle axiomatizations. The main benefit of the natural deduction systems over axiomatizations is their
Categorical Logic
 A CHAPTER IN THE FORTHCOMING VOLUME VI OF HANDBOOK OF LOGIC IN COMPUTER SCIENCE
, 1995
"... ..."
Infinite Objects in Type Theory
"... . We show that infinite objects can be constructively understood without the consideration of partial elements, or greatest fixedpoints, through the explicit consideration of proof objects. We present then a proof system based on these explanations. According to this analysis, the proof expressions ..."
Abstract

Cited by 83 (2 self)
 Add to MetaCart
. We show that infinite objects can be constructively understood without the consideration of partial elements, or greatest fixedpoints, through the explicit consideration of proof objects. We present then a proof system based on these explanations. According to this analysis, the proof expressions should have the same structure as the program expressions of a pure functional lazy language: variable, constructor, application, abstraction, case expressions, and local let expressions. 1 Introduction The usual explanation of infinite objects relies on the use of greatest fixedpoints of monotone operators, whose existence is justified by the impredicative proof of Tarski's fixed point theorem. The proof theory of such infinite objects, based on the so called coinduction principle, originally due to David Park [21] and explained with this name for instance in the paper [18], reflects this explanation. Constructively, to rely on such impredicative methods is somewhat unsatisfactory (see fo...
Propositional Lax Logic
, 1997
"... We investigate a novel intuitionistic modal logic, called Propositional Lax Logic, with promising applications to the formal verification of computer hardware. The logic has emerged from an attempt to express correctness `up to' behavioural constraints  a central notion in hardware verification  ..."
Abstract

Cited by 61 (8 self)
 Add to MetaCart
We investigate a novel intuitionistic modal logic, called Propositional Lax Logic, with promising applications to the formal verification of computer hardware. The logic has emerged from an attempt to express correctness `up to' behavioural constraints  a central notion in hardware verification  as a logical modality. The resulting logic is unorthodox in several respects. As a modal logic it is special since it features a single modal operator fl that has a flavour both of possibility and of necessity. As for hardware verification it is special since it is an intuitionistic rather than classical logic which so far has been the basis of the great majority of approaches. Finally, its models are unusual since they feature worlds with inconsistent information and furthermore the only frame condition is that the fl frame be a subrelation of the oeframe. In the paper we will provide the motivation for Propositional Lax Logic and present several technical results. We will investigate...
Specifying and Implementing Theorem Provers in a HigherOrder Logic Programming Language
, 1989
"... We argue that a logic programming language with a higherorder intuitionistic logic as its foundation can be used both to naturally specify and implement theorem provers. The language extends traditional logic programming languages by replacing firstorder terms with simplytyped λterms, replacing ..."
Abstract

Cited by 46 (7 self)
 Add to MetaCart
We argue that a logic programming language with a higherorder intuitionistic logic as its foundation can be used both to naturally specify and implement theorem provers. The language extends traditional logic programming languages by replacing firstorder terms with simplytyped λterms, replacing firstorder unification with higherorder unification, and allowing implication and universal quantification in queries and the bodies of clauses. Inference rules for a variety of proof systems can be naturally specified in this language. The higherorder features of the language contribute to a concise specification of provisos concerning variable occurrences in formulas and the discharge of assumptions present in many proof systems. In addition, abstraction in metaterms allows the construction of terms representing object level proofs which capture the notions of abstractions found in many proof systems. The operational interpretations of the connectives of the language provide a set of basic search operations which describe goaldirected search for proofs. To emphasize the generality of the metalanguage, we compare it to another general specification language: the Logical Framework (LF). We describe a translation which compiles a specification of a logic in LF to a set of formulas of our metalanguage, and
Orderenriched categorical models of the classical sequent calculus
 LECTURE AT INTERNATIONAL CENTRE FOR MATHEMATICAL SCIENCES, WORKSHOP ON PROOF THEORY AND ALGORITHMS
, 2003
"... It is wellknown that weakening and contraction cause naïve categorical models of the classical sequent calculus to collapse to Boolean lattices. Starting from a convenient formulation of the wellknown categorical semantics of linear classical sequent proofs, we give models of weakening and contra ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
It is wellknown that weakening and contraction cause naïve categorical models of the classical sequent calculus to collapse to Boolean lattices. Starting from a convenient formulation of the wellknown categorical semantics of linear classical sequent proofs, we give models of weakening and contraction that do not collapse. Cutreduction is interpreted by a partial order between morphisms. Our models make no commitment to any translation of classical logic into intuitionistic logic and distinguish nondeterministic choices of cutelimination. We show soundness and completeness via initial models built from proof nets, and describe models built from sets and relations.
Logical Pluralism
 To appear, Special Logic issue of the Australasian Journal of Philosophy
, 2000
"... Abstract: A widespread assumption in contemporary philosophy of logic is that there is one true logic, that there is one and only one correct answer as to whether a given argument is deductively valid. In this paper we propose an alternative view, logical pluralism. According to logical pluralism th ..."
Abstract

Cited by 23 (5 self)
 Add to MetaCart
Abstract: A widespread assumption in contemporary philosophy of logic is that there is one true logic, that there is one and only one correct answer as to whether a given argument is deductively valid. In this paper we propose an alternative view, logical pluralism. According to logical pluralism there is not one true logic; there are many. There is not always a single answer to the question “is this argument valid?” 1 Logic, Logics and Consequence Anyone acquainted with contemporary Logic knows that there are many socalled logics. 1 But are these logics rightly socalled? Are any of the menagerie of nonclassical logics, such as relevant logics, intuitionistic logic, paraconsistent logics or quantum logics, as deserving of the title ‘logic ’ as classical logic? On the other hand, is classical logic really as deserving of the title ‘logic ’ as relevant logic (or any of the other nonclassical logics)? If so, why so? If not, why not? Logic has a chief subject matter: Logical Consequence. The chief aim of