Results 1  10
of
54
Constructivism and Proof Theory
, 2003
"... Introduction to the constructive point of view in the foundations of mathematics, in
particular intuitionism due to L.E.J. Brouwer, constructive recursive mathematics
due to A.A. Markov, and Bishop’s constructive mathematics. The constructive interpretation
and formalization of logic is described. F ..."
Abstract

Cited by 162 (4 self)
 Add to MetaCart
Introduction to the constructive point of view in the foundations of mathematics, in
particular intuitionism due to L.E.J. Brouwer, constructive recursive mathematics
due to A.A. Markov, and Bishop’s constructive mathematics. The constructive interpretation
and formalization of logic is described. For constructive (intuitionistic)
arithmetic, Kleene’s realizability interpretation is given; this provides an example
of the possibility of a constructive mathematical practice which diverges from classical
mathematics. The crucial notion in intuitionistic analysis, choice sequence, is
briefly described and some principles which are valid for choice sequences are discussed.
The second half of the article deals with some aspects of proof theory, i.e.,
the study of formal proofs as combinatorial objects. Gentzen’s fundamental contributions
are outlined: his introduction of the socalled Gentzen systems which use
sequents instead of formulas and his result on firstorder arithmetic showing that
(suitably formalized) transfinite induction up to the ordinal "0 cannot be proved in
firstorder arithmetic.
Logic programming revisited: logic programs as inductive definitions
 ACM Transactions on Computational Logic
, 2001
"... Logic programming has been introduced as programming in the Horn clause subset of first order logic. This view breaks down for the negation as failure inference rule. To overcome the problem, one line of research has been to view a logic program as a set of iffdefinitions. A second approach was to ..."
Abstract

Cited by 35 (21 self)
 Add to MetaCart
Logic programming has been introduced as programming in the Horn clause subset of first order logic. This view breaks down for the negation as failure inference rule. To overcome the problem, one line of research has been to view a logic program as a set of iffdefinitions. A second approach was to identify a unique canonical, preferred or intended model among the models of the program and to appeal to common sense to validate the choice of such model. Another line of research developed the view of logic programming as a nonmonotonic reasoning formalism strongly related to Default Logic and Autoepistemic Logic. These competing approaches have resulted in some confusion about the declarative meaning of logic programming. This paper investigates the problem and proposes an alternative epistemological foundation for the canonical model approach, which is not based on common sense but on a solid mathematical information principle. The thesis is developed that logic programming can be understood as a natural and general logic of inductive definitions. In particular, logic programs with negation represent nonmonotone inductive definitions. It is argued that this thesis results in an alternative justification of the wellfounded model as the unique intended model of the logic program. In addition, it equips logic programs with an easy to comprehend meaning
Inductively Generated Formal Topologies
"... Formal topology aims at developing general topology in intuitionistic and predicative mathematics. Many classical results of general topology have been already brought into the realm of constructive mathematics by using formal topology and also new light on basic topological notions was gained w ..."
Abstract

Cited by 31 (6 self)
 Add to MetaCart
Formal topology aims at developing general topology in intuitionistic and predicative mathematics. Many classical results of general topology have been already brought into the realm of constructive mathematics by using formal topology and also new light on basic topological notions was gained with this approach which allows distinction which are not sensible in classical topology. Here we give a systematic exposition of one of the main tools in formal topology: inductive generation. In fact, many formal topologies can be presented in a predicative way by an inductive generation and thus their properties can be proved inductively. We show however that some natural complete Heyting algebra cannot be inductively defined. Contents 1 The notion of formal topology 3 1.1 Concrete topological spaces . . . . . . . . . . . . . . . . . . . . . 3 1.2 Formal topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Three problems and their solution 7 2.1 Formal topologies wi...
The Strength of Some MartinLöf Type Theories
 Arch. Math. Logic
, 1994
"... One objective of this paper is the determination of the prooftheoretic strength of Martin Lof's type theory with a universe and the type of wellfounded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely ..."
Abstract

Cited by 25 (5 self)
 Add to MetaCart
One objective of this paper is the determination of the prooftheoretic strength of Martin Lof's type theory with a universe and the type of wellfounded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely the one with \Delta 1 2 comprehension and bar induction. As MartinLof intended to formulate a system of constructive (intuitionistic) mathematics that has a sound philosophical basis, this yields a constructive consistency proof of a strong classical theory. Also the prooftheoretic strength of other inductive types like Aczel's type of iterative sets is investigated in various contexts. Further, we study metamathematical relations between type theories and other frameworks for formalizing constructive mathematics, e.g. Aczel's set theories and theories of operations and classes as developed by Feferman. 0 Introduction MartinLof's intuitionistic theory of types was originally introduce...
Higher Order Logic
 In Handbook of Logic in Artificial Intelligence and Logic Programming
, 1994
"... Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Definin ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Defining data types : : : : : : : : : : : : : : : : : : : : : 6 2.4 Describing processes : : : : : : : : : : : : : : : : : : : : : 8 2.5 Expressing convergence using second order validity : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.6 Truth definitions: the analytical hierarchy : : : : : : : : 10 2.7 Inductive definitions : : : : : : : : : : : : : : : : : : : : : 13 3 Canonical semantics of higher order logic : : : : : : : : : : : : 15 3.1 Tarskian semantics of second order logic : : : : : : : : : 15 3.2 Function and re
On the NoCounterexample Interpretation
 J. SYMBOLIC LOGIC
, 1997
"... In [15],[16] Kreisel introduced the nocounterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated "substitution method (due to W. Ackermann), that for every theorem A (A prenex) of firstorder Peano arithmetic PA one can find ordinal recursive functi ..."
Abstract

Cited by 18 (10 self)
 Add to MetaCart
In [15],[16] Kreisel introduced the nocounterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated "substitution method (due to W. Ackermann), that for every theorem A (A prenex) of firstorder Peano arithmetic PA one can find ordinal recursive functionals \Phi A of order type ! " 0 which realize the Herbrand normal form A of A. Subsequently more
A New Method for Establishing Conservativity of Classical Systems Over Their Intuitionistic Version
"... this paper we present such a method. Applied to I \Sigma ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
this paper we present such a method. Applied to I \Sigma
The Strength of Some MartinLöf Type Theories
 ARCHIVE FOR MATHEMATICAL LOGIC
, 1994
"... One objective of this paper is the determination of the prooftheoretic strength of MartinLöf's type theory with a universe and the type of wellfounded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely th ..."
Abstract

Cited by 14 (10 self)
 Add to MetaCart
One objective of this paper is the determination of the prooftheoretic strength of MartinLöf's type theory with a universe and the type of wellfounded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely the one with \Delta 1 2 comprehension and bar induction. As MartinLöf intended to formulate a system of constructive (intuitionistic) mathematics that has a sound philosophical basis, this yields a constructive consistency proof of a strong classical theory. Also the prooftheoretic strength of other inductive types like Aczel's type of iterative sets is investigated in various contexts. Further, we study metamathematical relations between type theories and other frameworks for formalizing constructive mathematics, e.g. Aczel's set theories and theories of operations and classes as developed by Feferman.
On the unity of duality
 Special issue on “Classical Logic and Computation
, 2008
"... Most type systems are agnostic regarding the evaluation strategy for the underlying languages, with the value restriction for ML which is absent in Haskell as a notable exception. As type systems become more precise, however, detailed properties of the operational semantics may become visible becaus ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
Most type systems are agnostic regarding the evaluation strategy for the underlying languages, with the value restriction for ML which is absent in Haskell as a notable exception. As type systems become more precise, however, detailed properties of the operational semantics may become visible because properties captured by the types may be sound under one strategy but not the other. For example, intersection types distinguish between callbyname and callbyvalue functions, because the subtyping law (A → B) ∩ (A → C) ≤ A → (B ∩ C) is unsound for the latter in the presence of effects. In this paper we develop a prooftheoretic framework for analyzing the interaction of types with evaluation order, based on the notion of polarity. Polarity was discovered through linear logic, but we propose a fresh origin in Dummett’s program of justifying the logical laws through alternative verificationist or pragmatist “meaningtheories”, which include a bias towards either introduction or elimination rules. We revisit Dummett’s analysis using the tools of MartinLöf’s judgmental method, and then show how to extend it to a unified polarized logic, with Girard’s “shift ” connectives acting as intermediaries. This logic safely combines intuitionistic and dual intuitionistic reasoning principles, while simultaneously admitting a focusing interpretation for the classical sequent calculus. Then, by applying the CurryHoward isomorphism to polarized logic, we obtain a single programming language in which evaluation order is reflected at the level of types. Different logical notions correspond directly to natural programming constructs, such as patternmatching, explicit substitutions, values and callbyvalue continuations. We give examples demonstrating the expressiveness of the language and type system, and prove a basic but modular type safety result. We conclude with a brief discussion of extensions to the language with additional effects and types, and sketch the sort of explanation this can provide for operationallysensitive typing phenomena. 1
Hilbert's Programs: 19171922
, 1999
"... . Hilbert's finitist programwas not created at the beginning of the twenties solely to counteract Brouwer's intuitionism, but rather emerged out of broad philosophical reflections on the foundations of mathematics and out of detailed logical work; that is evident from notes of lecture courses tha ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
. Hilbert's finitist programwas not created at the beginning of the twenties solely to counteract Brouwer's intuitionism, but rather emerged out of broad philosophical reflections on the foundations of mathematics and out of detailed logical work; that is evident from notes of lecture courses that were given by Hilbert and prepared in collaboration with Bernays during the period from 1917 to 1922. These notes reveal a dialectic progression from a critical logicism through a radical constructivism toward finitism; the progression has to be seen against the background of the stunning presentation of mathematical logic in the lectures given during the winter term 1917/18. In this paper, I sketch the connection of Hilbert's considerations to issues in the foundations of mathematics during the second half of the 19th century, describe the work that laid the basis of modern mathematical logic, and analyze the first steps in the new subject of proof theory. A revision of the standar...