Results 1  10
of
146
Combining labeled and unlabeled data with cotraining
, 1998
"... We consider the problem of using a large unlabeled sample to boost performance of a learning algorithm when only a small set of labeled examples is available. In particular, we consider a setting in which the description of each example can be partitioned into two distinct views, motivated by the ta ..."
Abstract

Cited by 1244 (28 self)
 Add to MetaCart
We consider the problem of using a large unlabeled sample to boost performance of a learning algorithm when only a small set of labeled examples is available. In particular, we consider a setting in which the description of each example can be partitioned into two distinct views, motivated by the task of learning to classify web pages. For example, the description of a web page can be partitioned into the words occurring on that page, and the words occurring in hyperlinks that point to that page. We assume that either view of the example would be su cient for learning if we had enough labeled data, but our goal is to use both views together to allow inexpensive unlabeled data to augment amuch smaller set of labeled examples. Speci cally, the presence of two distinct views of each example suggests strategies in which two learning algorithms are trained separately on each view, and then each algorithm's predictions on new unlabeled examples are used to enlarge the training set of the other. Our goal in this paper is to provide a PACstyle analysis for this setting, and, more broadly, a PACstyle framework for the general problem of learning from both labeled and unlabeled data. We also provide empirical results on real webpage data indicating that this use of unlabeled examples can lead to signi cant improvement of hypotheses in practice. As part of our analysis, we provide new re
Text Classification from Labeled and Unlabeled Documents using EM
 Machine Learning
, 1999
"... . This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large qua ..."
Abstract

Cited by 803 (17 self)
 Add to MetaCart
. This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. We introduce an algorithm for learning from labeled and unlabeled documents based on the combination of ExpectationMaximization (EM) and a naive Bayes classifier. The algorithm first trains a classifier using the available labeled documents, and probabilistically labels the unlabeled documents. It then trains a new classifier using the labels for all the documents, and iterates to convergence. This basic EM procedure works well when the data conform to the generative assumptions of the model. However these assumptions are often violated in practice, and poor performance can result. We present two extensions to the algorithm that improve ...
Active Learning with Statistical Models
, 1995
"... For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statisticallybas ..."
Abstract

Cited by 529 (10 self)
 Add to MetaCart
For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statisticallybased learning architectures: mixtures of Gaussians and locally weighted regression. While the techniques for neural networks are expensive and approximate, the techniques for mixtures of Gaussians and locally weighted regression are both efficient and accurate.
Multitask Learning
 MACHINE LEARNING
, 1997
"... Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task ..."
Abstract

Cited by 465 (7 self)
 Add to MetaCart
Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better. This paper reviews prior work on MTL, presents new evidence that MTL in backprop nets discovers task relatedness without the need of supervisory signals, and presents new results for MTL with knearest neighbor and kernel regression. In this paper we demonstrate multitask learning in three domains. We explain how multitask learning works, and show that there are many opportunities for multitask learning in real domains. We present an algorithm and results for multitask learning with casebased methods like knearest neighbor and kernel regression, and sketch an algorithm for multitask learning in decision trees. Because multitask learning works, can be applied to many different kinds of domains, and can be used with different learning algorithms, we conjecture there will be many opportunities for its use on realworld problems.
A Unifying Review of Linear Gaussian Models
, 1999
"... Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observa ..."
Abstract

Cited by 260 (17 self)
 Add to MetaCart
Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model. We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models.
Employing EM in PoolBased Active Learning for Text Classification
, 1998
"... This paper shows how a text classifier's need for labeled training data can be reduced by a combination of active learning and Expectation Maximization (EM) on a pool of unlabeled data. QuerybyCommittee is used to actively select documents for labeling, then EM with a naive Bayes model further imp ..."
Abstract

Cited by 255 (9 self)
 Add to MetaCart
This paper shows how a text classifier's need for labeled training data can be reduced by a combination of active learning and Expectation Maximization (EM) on a pool of unlabeled data. QuerybyCommittee is used to actively select documents for labeling, then EM with a naive Bayes model further improves classification accuracy by concurrently estimating probabilistic labels for the remaining unlabeled documents and using them to improve the model. We also present a metric for better measuring disagreement among committee members; it accounts for the strength of their disagreement and for the distribution of the documents. Experimental results show that our method of combining EM and active learning requires only half as many labeled training examples to achieve the same accuracy as either EM or active learning alone. Keywords: text classification active learning unsupervised learning information retrieval 1 Introduction In many settings for learning text classifiers, obtaining lab...
Robust automatic speech recognition with missing and unreliable acoustic data
 Speech Communication
, 2001
"... ..."
The Helmholtz Machine
, 1995
"... Discovering the structure inherent in a set of patterns is a fundamental aim of statistical inference or learning. One fruitful approach is to build a parameterized stochastic generative model, independent draws from which are likely to produce the patterns. For all but the simplest generative model ..."
Abstract

Cited by 194 (22 self)
 Add to MetaCart
Discovering the structure inherent in a set of patterns is a fundamental aim of statistical inference or learning. One fruitful approach is to build a parameterized stochastic generative model, independent draws from which are likely to produce the patterns. For all but the simplest generative models, each pattern can be generated in exponentially many ways. It is thus intractable to adjust the parameters to maximize the probability of the observed patterns. We describe a way of finessing this combinatorial explosion by maximizing an easily computed lower bound on the probability of the observations. Our method can be viewed as a form of hierarchical selfsupervised learning that may relate to the function of bottomup and topdown cortical processing pathways.
Learning with Labeled and Unlabeled Data
, 2001
"... In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as well as ..."
Abstract

Cited by 165 (3 self)
 Add to MetaCart
In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as well as numerous suggestions for potential future work. Therefore, this work contains more speculative and partly subjective material than the reader might expect from a literature review. We give a rigorous definition of the problem and relate it to supervised and unsupervised learning. The crucial role of prior knowledge is put forward, and we discuss the important notion of inputdependent regularization. We postulate a number of baseline methods, being algorithms or algorithmic schemes which can more or less straightforwardly be applied to the problem, without the need for genuinely new concepts. However, some of them might serve as basis for a genuine method. In the literature revi...
Learning to Classify Text from Labeled and Unlabeled Documents
, 1998
"... . This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is significant because in many important text classification problems obtaining classification labels is expensi ..."
Abstract

Cited by 164 (18 self)
 Add to MetaCart
. This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is significant because in many important text classification problems obtaining classification labels is expensive, while large quantities of unlabeled documents are readily available. We present a theoretical argument showing that, under common assumptions, unlabeled data contain information about the target function. We then introduce an algorithm for learning from labeled and unlabeled text, based on the combination of ExpectationMaximization with a naive Bayes classifier. The algorithm first trains a classifier using the available labeled documents, and probabilistically labels the unlabeled documents. It then trains a new classifier using the labels for all the documents, and iterates. Experimental results, obtained using text from three different realworld tasks, show that the use of unlabeled...