Results 1  10
of
10
Infinite sets that admit fast exhaustive search
 In Proceedings of the 22nd Annual IEEE Symposium on Logic In Computer Science
, 2007
"... Abstract. Perhaps surprisingly, there are infinite sets that admit mechanical exhaustive search in finite time. We investigate three related questions: What kinds of infinite sets admit mechanical exhaustive search in finite time? How do we systematically build such sets? How fast can exhaustive sea ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
Abstract. Perhaps surprisingly, there are infinite sets that admit mechanical exhaustive search in finite time. We investigate three related questions: What kinds of infinite sets admit mechanical exhaustive search in finite time? How do we systematically build such sets? How fast can exhaustive search over infinite sets be performed? Keywords. Highertype computability and complexity, Kleene–Kreisel functionals, PCF, Haskell, topology. 1.
EXHAUSTIBLE SETS IN HIGHERTYPE COMPUTATION
, 2008
"... We say that a set is exhaustible if it admits algorithmic universal quantification for continuous predicates in finite time, and searchable if there is an algorithm that, given any continuous predicate, either selects an element for which the predicate holds or else tells there is no example. The C ..."
Abstract

Cited by 13 (12 self)
 Add to MetaCart
We say that a set is exhaustible if it admits algorithmic universal quantification for continuous predicates in finite time, and searchable if there is an algorithm that, given any continuous predicate, either selects an element for which the predicate holds or else tells there is no example. The Cantor space of infinite sequences of binary digits is known to be searchable. Searchable sets are exhaustible, and we show that the converse also holds for sets of hereditarily total elements in the hierarchy of continuous functionals; moreover, a selection functional can be constructed uniformly from a quantification functional. We prove that searchable sets are closed under intersections with decidable sets, and under the formation of computable images and of finite and countably infinite products. This is related to the fact, established here, that exhaustible sets are topologically compact. We obtain a complete description of exhaustible total sets by developing a computational version of a topological Arzela–Ascoli type characterization of compact subsets of function spaces. We also show that, in the nonempty case, they are precisely the computable images of the Cantor space. The emphasis of this paper is on the theory of exhaustible and searchable sets, but we also briefly sketch applications.
Continuous Functionals of Dependent Types and Equilogical Spaces
, 2000
"... . We show that dependent sums and dependent products of continuous parametrizations on domains with dense, codense, and natural totalities agree with dependent sums and dependent products in equilogical spaces, and thus also in the realizability topos RT(P!). Keywords: continuous functionals, depen ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
. We show that dependent sums and dependent products of continuous parametrizations on domains with dense, codense, and natural totalities agree with dependent sums and dependent products in equilogical spaces, and thus also in the realizability topos RT(P!). Keywords: continuous functionals, dependent type theory, domain theory, equilogical spaces. 1 Introduction Recently there has been a lot of interest in understanding notions of totality for domains [3, 23, 4, 18, 21]. There are several reasons for this. Totality is the semantic analogue of termination, and one is naturally interested in understanding not only termination properties of programs but also how notions of program equivalence depend on assumptions regarding termination [21]. Another reason for studying totality on domains is to obtain generalizations of the nitetype hierarchy of total continuous functionals by Kleene and Kreisel [11], see [8] and [19] for good accounts of this subject. Ershov [7] showed how the Klee...
Notions of computability at higher types I
 In Logic Colloquium 2000
, 2005
"... We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a first step in this programme, we give an extended survey of the di#erent strands of research on higher type computability to date, bringing together material from recursion theory, constructive logic and computer science. The paper thus serves as a reasonably complete overview of the literature on higher type computability. Two sequel papers will be devoted to developing a more systematic account of the material reviewed here.
Full Abstraction, Totality and PCF
 Math. Structures Comput. Sci
, 1997
"... ion, Totality and PCF Gordon Plotkin Abstract Inspired by a question of Riecke, we consider the interaction of totality and full abstraction, asking whether full abstraction holds for Scott's model of cpos and continuous functions if one restricts to total programs and total observations. The ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
ion, Totality and PCF Gordon Plotkin Abstract Inspired by a question of Riecke, we consider the interaction of totality and full abstraction, asking whether full abstraction holds for Scott's model of cpos and continuous functions if one restricts to total programs and total observations. The answer is negative, as there are distinct operational and denotational notions of totality. However, when two terms are each total in both senses then they are totally equivalent operationally iff they are totally equivalent in the Scott model. Analysing further, we consider sequential and parallel versions of PCF and several models: Scott's model of continuous functions, Milner's fully abstract model of PCF and their effective submodels. We investigate how totality differs between these models. Some apparently rather difficult open problems arise, essentially concerning whether the sequential and parallel versions of PCF have the same expressive power, in the sense of total equivale...
On the ubiquity of certain total type structures
 UNDER CONSIDERATION FOR PUBLICATION IN MATH. STRUCT. IN COMP. SCIENCE
, 2007
"... It is a fact of experience from the study of higher type computability that a wide range of approaches to defining a class of (hereditarily) total functionals over N leads in practice to a relatively small handful of distinct type structures. Among these are the type structure C of KleeneKreisel co ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
It is a fact of experience from the study of higher type computability that a wide range of approaches to defining a class of (hereditarily) total functionals over N leads in practice to a relatively small handful of distinct type structures. Among these are the type structure C of KleeneKreisel continuous functionals, its effective substructure C eff, and the type structure HEO of the hereditarily effective operations. However, the proofs of the relevant equivalences are often nontrivial, and it is not immediately clear why these particular type structures should arise so ubiquitously. In this paper we present some new results which go some way towards explaining this phenomenon. Our results show that a large class of extensional collapse constructions always give rise to C, C eff or HEO (as appropriate). We obtain versions of our results for both the “standard” and “modified” extensional collapse constructions. The proofs make essential use of a technique due to Normann. Many new results, as well as some previously known ones, can be obtained as instances of our theorems, but more importantly, the proofs apply uniformly to a whole family of constructions, and provide strong evidence that the above three type structures are highly canonical mathematical objects.
Applications of the KleeneKreisel Density Theorem to Theoretical Computer Science
, 2006
"... The KleeneKreisel density theorem is one of the tools used to investigate the denotational semantics of programs involving higher types. We give a brief introduction to the classical density theorem, then show how this may be generalized to set theoretical models for algorithms accepting real numbe ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The KleeneKreisel density theorem is one of the tools used to investigate the denotational semantics of programs involving higher types. We give a brief introduction to the classical density theorem, then show how this may be generalized to set theoretical models for algorithms accepting real numbers as inputs and finally survey some recent applications of this generalization. 1
Notions of Computability for General Datatypes  Case For Support to accompany EPS(RP)
"... ion and information hiding III.1. Abstract types A more ambitious and speculative part of our programme will be the investigation of issues of computability for abstract types. In many modern programming languages, facilities for data abstraction are very important for the modular design of large p ..."
Abstract
 Add to MetaCart
ion and information hiding III.1. Abstract types A more ambitious and speculative part of our programme will be the investigation of issues of computability for abstract types. In many modern programming languages, facilities for data abstraction are very important for the modular design of large programs. The basic idea is that we can only interact with the data values through some prescribed interface. Indeed, the finite types are abstract types in a certain sense, since (typically) the only way to interact with a function is via application. Taking an extensional or "behavioural" view of datatypes, one is led to consider questions such as the following: ffl Which functions to and from the abstract type are computable? ffl When are two elements of the abstract type observationally equivalent? ffl When are two implementations of the same abstract type signature observationally indistinguishable ? Even for abstract types with firstorder signatures, these questions present a sign...