Results 1 
9 of
9
A NATURAL AXIOMATIZATION OF COMPUTABILITY AND PROOF OF CHURCH’S THESIS
"... Abstract. Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally e ..."
Abstract

Cited by 23 (10 self)
 Add to MetaCart
(Show Context)
Abstract. Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally equivalent to an abstract state machine. This theorem presupposes three natural postulates about algorithmic computation. Here, we show that augmenting those postulates with an additional requirement regarding basic operations gives a natural axiomatization of computability and a proof of Church’s Thesis, as Gödel and others suggested may be possible. In a similar way, but with a different set of basic operations, one can prove Turing’s Thesis, characterizing the effective string functions, and—in particular—the effectivelycomputable functions on string representations of numbers.
"Clarifying the Nature of the Infinite": the development of metamathematics and proof theory
, 2001
"... We discuss the development of metamathematics in the Hilbert school, and Hilbert's prooftheoretic program in particular. We place this program in a broader historical and philosophical context, especially with respect to nineteenth century developments in mathematics and logic. Finally, we sho ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
We discuss the development of metamathematics in the Hilbert school, and Hilbert's prooftheoretic program in particular. We place this program in a broader historical and philosophical context, especially with respect to nineteenth century developments in mathematics and logic. Finally, we show how these considerations help frame our understanding of metamathematics and proof theory today.
Between Russell And Hilbert: Behmann On The Foundations Of Mathematics
 Bulletin of Symbolic Logic
, 1999
"... . After giving a brief overview of the renewal of interest in logic and the foundations of mathematics in G ottingen in the period 19141921, I give a detailed presentation of the approach to the foundations of mathematics found in Behmann's doctoral dissertation of 1918, Die Antinomie der tran ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
(Show Context)
. After giving a brief overview of the renewal of interest in logic and the foundations of mathematics in G ottingen in the period 19141921, I give a detailed presentation of the approach to the foundations of mathematics found in Behmann's doctoral dissertation of 1918, Die Antinomie der transfiniten Zahl und ihre Auflosung durch die Theorie von Russell und Whitehead. The dissertation was written under the guidance of David Hilbert and was primarily intended to give a clear exposition of the solution to the antinomies as found in Principia Mathematica. In the process of explaining the theory of Principia, Behmann also presented an original approach to the foundations of mathematics which saw in sense perception of concrete individuals the Archimedean point for a secure foundation of mathematical knowledge. The last part of the paper points out an important numbers of connections between Behmann's work and Hilbert's foundational thought. 1. Logic and Foundations of Mathematics in G ...
Hilbert’s Program Then and Now
, 2005
"... Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and els ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and elsewhere in the 1920s
The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program
, 2001
"... . After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
(Show Context)
. After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for ever stronger and more comprehensive areas of mathematics and finitistic proofs of consistency of these systems. Early advances in these areas were made by Hilbert (and Bernays) in a series of lecture courses at the University of Gttingen between 1917 and 1923, and notably in Ackermann 's dissertation of 1924. The main innovation was the invention of the ecalculus, on which Hilbert's axiom systems were based, and the development of the esubstitution method as a basis for consistency proofs. The paper traces the development of the "simultaneous development of logic and mathematics" through the enotation and provides an analysis of Ackermann's consisten...
BERNAYS AND SET THEORY
"... We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles. ..."
Abstract
 Add to MetaCart
(Show Context)
We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles.
Bicartesian Coherence
, 2007
"... Coherence is demonstrated for categories with binary products and sums, but without the terminal and the initial object, and without distribution. This coherence amounts to the existence of a faithful functor from a free ..."
Abstract
 Add to MetaCart
Coherence is demonstrated for categories with binary products and sums, but without the terminal and the initial object, and without distribution. This coherence amounts to the existence of a faithful functor from a free
Bicartesian coherence revisited
, 2008
"... A survey is given of results about coherence for categories with finite products and coproducts. For these results, which were published previously by the authors in several places, some formulations and proofs are here corrected, and matters are updated. The categories investigated in this paper fo ..."
Abstract
 Add to MetaCart
A survey is given of results about coherence for categories with finite products and coproducts. For these results, which were published previously by the authors in several places, some formulations and proofs are here corrected, and matters are updated. The categories investigated in this paper formalize equality of proofs in classical and intuitionistic conjunctivedisjunctive logic without distribution of conjunction over disjunction.