Results 1 
6 of
6
Computing in Cognitive Science
, 1989
"... Introduction Nobody doubts that computers have had a profound influence on the study of human cognition. The very existence of a discipline called Cognitive Science is a tribute to this influence. One of the principal characteristics that distinguishes Cognitive Science from more traditional studies ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
Introduction Nobody doubts that computers have had a profound influence on the study of human cognition. The very existence of a discipline called Cognitive Science is a tribute to this influence. One of the principal characteristics that distinguishes Cognitive Science from more traditional studies of cognition within Psychology, is the extent to which it has been influenced by both the ideas and the techniques of computing. It may come as a surprise to the outsider, then, to discover that there is no unanimity within the discipline on either (a) the nature (and in some cases the desireabilty) of the influence and (b) what computing is  or at least on its  essential character, as this pertains to Cognitive Science. In this essay I will attempt to comment on both these questions. The first question will bring us to a discussion of the role that computing plays in our understanding of human (and perhaps animal) cognition. I wi
"Clarifying the Nature of the Infinite": the development of metamathematics and proof theory
, 2001
"... We discuss the development of metamathematics in the Hilbert school, and Hilbert's prooftheoretic program in particular. We place this program in a broader historical and philosophical context, especially with respect to nineteenth century developments in mathematics and logic. Finally, we show how ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
We discuss the development of metamathematics in the Hilbert school, and Hilbert's prooftheoretic program in particular. We place this program in a broader historical and philosophical context, especially with respect to nineteenth century developments in mathematics and logic. Finally, we show how these considerations help frame our understanding of metamathematics and proof theory today.
Computing in Cognitive Science
, 1989
"... Introduction Nobody doubts that computers have had a profound influence on the study of human cognition. The very existence of a discipline called Cognitive Science is a tribute to this influence. One of the principal characteristics that distinguishes Cognitive Science from more traditional studie ..."
Abstract
 Add to MetaCart
Introduction Nobody doubts that computers have had a profound influence on the study of human cognition. The very existence of a discipline called Cognitive Science is a tribute to this influence. One of the principal characteristics that distinguishes Cognitive Science from more traditional studies of cognition within Psychology, is the extent to which it has been influenced by both the ideas and the techniques of computing. It may come as a surprise to the outsider, then, to discover that there is no unanimity within the discipline on either (a) the nature (and in some cases the desireabilty) of the influence and (b) what computing is  or at least on its  essential character, as this pertains to Cognitive Science. In this essay I will attempt to comment on both these questions. The first question will bring us to a discussion of the role that computing plays in our understanding of human (and perhaps animal) cognition. I
39 DIAGRAMS AS MEANS AND OBJECTS OF MATHEMATICAL REASONING
"... According to Peirce a great part of mathematical thinking consists in observing or imagining the outcomes and regularities of manipulations of all sorts of diagrams. This tenet is explained and substantiated by expounding the notion of diagram and by analyzing several specific cases from different p ..."
Abstract
 Add to MetaCart
According to Peirce a great part of mathematical thinking consists in observing or imagining the outcomes and regularities of manipulations of all sorts of diagrams. This tenet is explained and substantiated by expounding the notion of diagram and by analyzing several specific cases from different parts of mathematics.
In Defense of the Ideal 2nd DRAFT
"... This paper lies at the edge of the topic of the workshop. We can write down a Π1 1 axiom whose models are precisely the ∈structures 〈Rα, ∈ ∩R2 α〉 where α> 0 and Rα is the collection of all (pure) sets of rank < α. From this, one can consider the introduction of new axioms concerning the size of α. ..."
Abstract
 Add to MetaCart
This paper lies at the edge of the topic of the workshop. We can write down a Π1 1 axiom whose models are precisely the ∈structures 〈Rα, ∈ ∩R2 α〉 where α> 0 and Rα is the collection of all (pure) sets of rank < α. From this, one can consider the introduction of new axioms concerning the size of α. The question of the grounds for doing so is perhaps the central question of the workshop. But I want to discuss another question which, as I said, arises at the periphery: How do we know that there are structures 〈Rα, ∈ ∩R2 α〉? How do we know that there exist such things as sets and how do we know that, given such things, the axioms we write down are true of them? These seem very primitive questions, but the skepticism implicit in them has deep (and ancient) roots. In particular, they are questions about ideal objects in general, and not just about the actual infinite. I want to explain why I think the questions (as intended) are empty and the skepticism unfounded. 1 I will be expanding the argument of the first part of my paper “Proof and truth: the Platonism of mathematics”[1986a]. 2 The argument in question