Results 1 
6 of
6
"Clarifying the Nature of the Infinite": the development of metamathematics and proof theory
, 2001
"... We discuss the development of metamathematics in the Hilbert school, and Hilbert's prooftheoretic program in particular. We place this program in a broader historical and philosophical context, especially with respect to nineteenth century developments in mathematics and logic. Finally, we show how ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
We discuss the development of metamathematics in the Hilbert school, and Hilbert's prooftheoretic program in particular. We place this program in a broader historical and philosophical context, especially with respect to nineteenth century developments in mathematics and logic. Finally, we show how these considerations help frame our understanding of metamathematics and proof theory today.
Hilbert’s Program Then and Now
, 2005
"... Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and els ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and elsewhere in the 1920s
Remarks On Finitism
 Reflections on the Foundations of Mathematics. Essays in Honor of Solomon Feferman, LNL 15. Association for Symbolic Logic
, 2000
"... representability in intuition. (See [2, p. 40].) But our problem is, of course, not the finiteness of a number, but the infinity of numbers. There is, I think, a di#culty with Bernays' notion of formal object, where this is intended to extend to numbers so large as, not only to be beyond processing ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
representability in intuition. (See [2, p. 40].) But our problem is, of course, not the finiteness of a number, but the infinity of numbers. There is, I think, a di#culty with Bernays' notion of formal object, where this is intended to extend to numbers so large as, not only to be beyond processing by the human mind, but possibly to be beyond representablity in the physical world. [2, p. 39]. This di#culty ought to be discussed more adequately then + This paper is based on a talk that I was very pleased to give at the conference Reflections, December 1315, 1998, in honor of Solomon Feferman on his seventieth birthday. The choice of topic is especially appropriate for the conference in view of recent discussions we had had about finitism. I profited from the discussion following my talk and, in particular, from the remarks of Richard Zach. I have since had the advantage of further discussions with Zach and of reading his paper 1998; and I use his scholarshi
Gödel’s incompleteness theorem and the philosophy of open systems
 7, Centre de Recherches Sémiologiques, Université de Neuchâtel (Neuchâtel
, 1992
"... In recent years a number of criticisms have been raised against the formal systems of ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
In recent years a number of criticisms have been raised against the formal systems of
Gödel on Intuition and on Hilbert’s finitism
"... There are some puzzles about Gödel’s published and unpublished remarks concerning finitism that have led some commentators to believe that his conception of it was unstable, that he oscillated back and forth between different accounts of it. I want to discuss these puzzles and argue that, on the con ..."
Abstract
 Add to MetaCart
There are some puzzles about Gödel’s published and unpublished remarks concerning finitism that have led some commentators to believe that his conception of it was unstable, that he oscillated back and forth between different accounts of it. I want to discuss these puzzles and argue that, on the contrary, Gödel’s writings represent a smooth evolution, with just one rather small doublereversal, of his view of finitism. He used the term “finit ” (in German) or “finitary ” or “finitistic ” primarily to refer to Hilbert’s conception of finitary mathematics. On two occasions (only, as far as I know), the lecture notes for his lecture at Zilsel’s [Gödel, 1938a] and the lecture notes for a lecture at Yale [Gödel, *1941], he used it in a way that he knew—in the second case, explicitly—went beyond what Hilbert meant. Early in his career, he believed that finitism (in Hilbert’s sense) is openended, in the sense that no correct formal system can be known to formalize all finitist proofs and, in particular, all possible finitist proofs of consistency of firstorder number theory, P A; but starting in the Dialectica paper