Results 1 
5 of
5
Typability and Type Checking in System F Are Equivalent and Undecidable
 ANNALS OF PURE AND APPLIED LOGIC
, 1998
"... Girard and Reynolds independently invented System F (a.k.a. the secondorder polymorphically typed lambda calculus) to handle problems in logic and computer programming language design, respectively. Viewing F in the Curry style, which associates types with untyped lambda terms, raises the questions ..."
Abstract

Cited by 70 (5 self)
 Add to MetaCart
Girard and Reynolds independently invented System F (a.k.a. the secondorder polymorphically typed lambda calculus) to handle problems in logic and computer programming language design, respectively. Viewing F in the Curry style, which associates types with untyped lambda terms, raises the questions of typability and type checking. Typability asks for a term whether there exists some type it can be given. Type checking asks, for a particular term and type, whether the term can be given that type. The decidability of these problems has been settled for restrictions and extensions of F and related systems and complexity lowerbounds have been determined for typability in F, but this report is the first to resolve whether these problems are decidable for System F. This report proves that type checking in F is undecidable, by a reduction from semiunification, and that typability in F is undecidable, by a reduction from type checking. Because there is an easy reduction from typability to type checking, the two problems are equivalent. The reduction from type checking to typability uses a novel method to construct lambda terms that simulate arbitrarily chosen type environments. All the results also hold for the lambdaIotacalculus.
Principality and Decidable Type Inference for FiniteRank Intersection Types
 In Conf. Rec. POPL ’99: 26th ACM Symp. Princ. of Prog. Langs
, 1999
"... Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typin ..."
Abstract

Cited by 55 (17 self)
 Add to MetaCart
Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typings and types exactly the strongly normalizable terms. More interestingly, every finiterank restriction of this system (using Leivant's first notion of rank) has principal typings and also has decidable type inference. This is in contrast to System F where the finite rank restriction for every finite rank at 3 and above has neither principal typings nor decidable type inference. This is also in contrast to earlier presentations of intersection types where the status (decidable or undecidable) of these properties is unknown for the finiterank restrictions at 3 and above. Furthermore, the notion of principal typings for our system involves only one operation, substitution, rather than severa...
A Calculus with Polymorphic and Polyvariant Flow Types
"... We present # CIL , a typed #calculus which serves as the foundation for a typed intermediate language for optimizing compilers for higherorder polymorphic programming languages. The key innovation of # CIL is a novel formulation of intersection and union types and flow labels on both terms and ..."
Abstract

Cited by 31 (11 self)
 Add to MetaCart
We present # CIL , a typed #calculus which serves as the foundation for a typed intermediate language for optimizing compilers for higherorder polymorphic programming languages. The key innovation of # CIL is a novel formulation of intersection and union types and flow labels on both terms and types. These flow types can encode polyvariant control and data flow information within a polymorphically typed program representation. Flow types can guide a compiler in generating customized data representations in a strongly typed setting. Since # CIL enjoys confluence, standardization, and subject reduction properties, it is a valuable tool for reasoning about programs and program transformations.
Type and FlowDirected Compilation for Specialized Data Representations
, 2002
"... The combination of intersection and union types with ow types gives the compiler writer unprecedented exibility in choosing data representations in the context of a typed intermediate language. We present the design of such a language and the design of a framework for exploiting the type system to s ..."
Abstract
 Add to MetaCart
The combination of intersection and union types with ow types gives the compiler writer unprecedented exibility in choosing data representations in the context of a typed intermediate language. We present the design of such a language and the design of a framework for exploiting the type system to support multiple representations of the same data type in a single program. The framework can transform the input term, in a typesafe way, so that dierent data representations can be used in the transformed term  even if they share a use site in the pretransformed term. We have implemented a compiler using the typed intermediate language and instantiated the framework to allow specialized function representations. We test the compiler on a set of benchmarks and show that the compiletime performance is reasonable. We further show that the compiled code does indeed bene t from specialized function representations.