Results 1  10
of
27
On The Algebraic Models Of Lambda Calculus
 Theoretical Computer Science
, 1997
"... . The variety (equational class) of lambda abstraction algebras was introduced to algebraize the untyped lambda calculus in the same way Boolean algebras algebraize the classical propositional calculus. The equational theory of lambda abstraction algebras is intended as an alternative to combinatory ..."
Abstract

Cited by 20 (11 self)
 Add to MetaCart
. The variety (equational class) of lambda abstraction algebras was introduced to algebraize the untyped lambda calculus in the same way Boolean algebras algebraize the classical propositional calculus. The equational theory of lambda abstraction algebras is intended as an alternative to combinatory logic in this regard since it is a firstorder algebraic description of lambda calculus, which allows to keep the lambda notation and hence all the functional intuitions. In this paper we show that the lattice of the subvarieties of lambda abstraction algebras is isomorphic to the lattice of lambda theories of the lambda calculus; for every variety of lambda abstraction algebras there exists exactly one lambda theory whose term algebra generates the variety. For example, the variety generated by the term algebra of the minimal lambda theory is the variety of all lambda abstraction algebras. This result is applied to obtain a generalization of the genericity lemma of finitary lambda calculus...
Not enough points is enough
 IN: COMPUTER SCIENCE LOGIC. VOLUME 4646 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2007
"... Models of the untyped λcalculus may be defined either as applicative structures satisfying a bunch of first order axioms, known as “λmodels”, or as (structures arising from) any reflexive object in a cartesian closed category (ccc, for brevity). These notions are tightly linked in the sense that: ..."
Abstract

Cited by 19 (9 self)
 Add to MetaCart
Models of the untyped λcalculus may be defined either as applicative structures satisfying a bunch of first order axioms, known as “λmodels”, or as (structures arising from) any reflexive object in a cartesian closed category (ccc, for brevity). These notions are tightly linked in the sense that: given a λmodel A, one may define a ccc in which A (the carrier set) is a reflexive object; conversely, if U is a reflexive object in a ccc C, having enough points, then C ( , U) may be turned into a λmodel. It is well known that, if C does not have enough points, then the applicative structure C ( , U) is not a λmodel in general. This paper: (i) shows that this mismatch can be avoided by choosing appropriately the carrier set of the λmodel associated with U; (ii) provides an example of an extensional reflexive object D in a ccc without enough points: the Kleislicategory of the comonad “finite multisets ” on Rel; (iii) presents some algebraic properties of the λmodel associated with D by (i) which make it suitable for dealing with nondeterministic extensions of the untyped λcalculus.
Graph lambda theories
 Journal of Logic and Computation
, 2004
"... Lambda theories are equational extensions of the untyped lambda calculus that are closed under derivation. The set of lambda theories is naturally equipped with a structure of complete lattice, where the meet of a family of lambda theories is their intersection, and the join is the least lambda theo ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
Lambda theories are equational extensions of the untyped lambda calculus that are closed under derivation. The set of lambda theories is naturally equipped with a structure of complete lattice, where the meet of a family of lambda theories is their intersection, and the join is the least lambda theory containing their union. In this paper we study the structure of the lattice of lambda theories by universal algebraic methods. We show that nontrivial quasiidentities in the language of lattices hold in the lattice of lambda theories, while every nontrivial lattice identity fails in the lattice of lambda theories if the language of lambda calculus is enriched by a suitable finite number of constants. We also show that there exists a sublattice of the lattice of lambda theories which satisfies: (i) a restricted form of distributivity, called meet semidistributivity; and (ii) a nontrivial identity in the language of lattices enriched by the relative product of binary relations.
Some Results on the Full Abstraction Problem for Restricted Lambda Calculi
 In Proc. of the 18 th International Symposium on Mathematical Foundations of Computer Science, MFCS'93, Springer LNCS
, 1993
"... ion Problem for Restricted Lambda Calculi Furio Honsell and Marina Lenisa Dipartimento di Matematica e Informatica, Universit`a di Udine, via Zanon,6  Italy Email:fhonsell,lenisag@udmi5400.cineca.it dedicated to Corrado Bohm on the occasion of his 70 th birthday Abstract. Issues in the mathemat ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
ion Problem for Restricted Lambda Calculi Furio Honsell and Marina Lenisa Dipartimento di Matematica e Informatica, Universit`a di Udine, via Zanon,6  Italy Email:fhonsell,lenisag@udmi5400.cineca.it dedicated to Corrado Bohm on the occasion of his 70 th birthday Abstract. Issues in the mathematical semantics of two restrictions of the calculus, i.e. Icalculus and V calculus, are discussed. A fully abstract model for the natural evaluation of the former is defined using complete partial orders and strict Scottcontinuous functions. A correct, albeit nonfully abstract, model for the SECD evaluation of the latter is defined using Girard's coherence spaces and stable functions. These results are used to illustrate the interest of the analysis of the fine structure of mathematical models of programming languages. 1 Introduction D. Scott, in the late sixties, discovered a truly mathematical semantics for  calculus using continuous lattices. His D1 model was the first example of ...
Simple easy terms
 Intersection Types and Related Systems, volume 70 of Electronic Notes in Computer Science
, 2002
"... Dipartimento di Informatica Universit`a di Venezia ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
Dipartimento di Informatica Universit`a di Venezia
Filter Models for ConjunctiveDisjunctive λcalculi
, 1996
"... The distinction between the conjunctive nature of nondeterminism as opposed to the disjunctive character of parallelism constitutes the motivation and the starting point of the present work. λcalculus is extended with both a nondeterministic choice and a parallel operator; a notion of reduction i ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
The distinction between the conjunctive nature of nondeterminism as opposed to the disjunctive character of parallelism constitutes the motivation and the starting point of the present work. λcalculus is extended with both a nondeterministic choice and a parallel operator; a notion of reduction is introduced, extending fireduction of the classical calculus. We study type assignment systems for this calculus, together with a denotational semantics which is initially defined constructing a set semimodel via simple types. We enrich the type system with intersection and union types, dually reflecting the disjunctive and conjunctive behaviour of the operators, and we build a filter model. The theory of this model is compared both with a Morrisstyle operational semantics and with a semantics based on a notion of capabilities.
A Complete Characterization of Complete IntersectionType Theories (Extended Abstract)
 ACM TOCL
, 2000
"... M. DEZANICIANCAGLINI Universita di Torino, Italy F. HONSELL Universita di Udine, Italy F. ALESSI Universita di Udine, Italy Abstract We characterize those intersectiontype theories which yield complete intersectiontype assignment systems for lcalculi, with respect to the three canonical ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
M. DEZANICIANCAGLINI Universita di Torino, Italy F. HONSELL Universita di Udine, Italy F. ALESSI Universita di Udine, Italy Abstract We characterize those intersectiontype theories which yield complete intersectiontype assignment systems for lcalculi, with respect to the three canonical settheoretical semantics for intersectiontypes: the inference semantics, the simple semantics and the Fsemantics. Keywords Lambda Calculus, Intersection Types, Semantic Completeness, Filter Structures. 1 Introduction Intersectiontypes disciplines originated in [6] to overcome the limitations of Curry 's type assignment system and to provide a characterization of strongly normalizing terms of the lcalculus. But very early on, the issue of completeness became crucial. Intersectiontype theories and filter lmodels have been introduced, in [5], precisely to achieve the completeness for the type assignment system l" BCD W , with respect to Scott's simple semantics. And this result, ...
An investigation into Functions as Processes
 In Proc. Ninth International Conference on the Mathematical Foundations of Programming Semantics (MFPS'93
, 1993
"... . In [Mil90] Milner examines the encoding of the calculus into the ßcalculus [MPW92]. The former is the universally accepted basis for computations with functions, the latter aims at being its counterpart for computations with processes. The primary goal of this paper is to continue the study of M ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
. In [Mil90] Milner examines the encoding of the calculus into the ßcalculus [MPW92]. The former is the universally accepted basis for computations with functions, the latter aims at being its counterpart for computations with processes. The primary goal of this paper is to continue the study of Milner's encodings. We focus mainly on the lazy calculus [Abr87]. We show that its encoding gives rise to a model, in which a weak form of extensionality holds. However the model is not fully abstract: To obtain full abstraction, we examine both the restrictive approach, in which the semantic domain of processes is cut down, and the expansive approach, in which calculus is enriched with constants to obtain a direct characterisation of the equivalence on terms induced, via the encoding, by the behavioural equivalence adopted on the processes. Our results are derived exploiting an intermediate representation of Milner's encodings into the HigherOrder ßcalculus, an !order extension of ...
Intersection Types and Lambda Models
, 2005
"... Invariance of interpretation by #conversion is one of the minimal requirements for any standard model for the #calculus. With the intersection type systems being a general framework for the study of semantic domains for the #calculus, the present paper provides a (syntactic) characterisation of t ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
Invariance of interpretation by #conversion is one of the minimal requirements for any standard model for the #calculus. With the intersection type systems being a general framework for the study of semantic domains for the #calculus, the present paper provides a (syntactic) characterisation of the above mentioned requirement in terms of characterisation results for intersection type assignment systems.
Must Preorder in NonDeterministic Untyped λcalculus
 IN CAAP '92, VOLUME 581 OF LNCS
, 1992
"... This paper studies the interplay between functional application and nondeterministic choice in the context of untyped λcalculus. We introduce an operational semantics which is based on the idea of must preorder, coming from the theory of process algebras. To characterize this relation, we build a ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
This paper studies the interplay between functional application and nondeterministic choice in the context of untyped λcalculus. We introduce an operational semantics which is based on the idea of must preorder, coming from the theory of process algebras. To characterize this relation, we build a model using the classical inverse limit construction, and we prove it fully abstract using a generalization of Böhm trees.